A pause in the weakening of the Atlantic meridional overturning circulation since the early 2010s

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Sang-Ki Lee, Dongmin Kim, Fabian A. Gomez, Hosmay Lopez, Denis L. Volkov, Shenfu Dong, Rick Lumpkin, Stephen Yeager
{"title":"A pause in the weakening of the Atlantic meridional overturning circulation since the early 2010s","authors":"Sang-Ki Lee, Dongmin Kim, Fabian A. Gomez, Hosmay Lopez, Denis L. Volkov, Shenfu Dong, Rick Lumpkin, Stephen Yeager","doi":"10.1038/s41467-024-54903-w","DOIUrl":null,"url":null,"abstract":"<p>The current state-of-the-art climate models when combined together suggest that the anthropogenic weakening of the Atlantic Meridional Overturning Circulation (AMOC) has already begun since the mid-1980s. However, continuous direct observational records during the past two decades have shown remarkable resilience of the AMOC. To shed light on this apparent contradiction, here we attempt to attribute the interdecadal variation of the historical AMOC to the anthropogenic and natural signals, by analyzing multiple climate and surface-forced ocean model simulations together with direct observational data. Our analysis suggests that an extensive weakening of the AMOC occurred in the 2000s, as evident from the surface-forced ocean model simulations, and was primarily driven by anthropogenic forcing and possibly augmented by natural variability. However, since the early 2010s, the natural component of the AMOC has greatly strengthened due to the development of a strong positive North Atlantic Oscillation. The enhanced natural AMOC signal in turn acted to oppose the anthropogenic weakening signal, leading to a near stalling of the AMOC weakening. Further analysis suggests that the tug-of-war between the natural and anthropogenic signals will likely continue in the next several years.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"138 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54903-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The current state-of-the-art climate models when combined together suggest that the anthropogenic weakening of the Atlantic Meridional Overturning Circulation (AMOC) has already begun since the mid-1980s. However, continuous direct observational records during the past two decades have shown remarkable resilience of the AMOC. To shed light on this apparent contradiction, here we attempt to attribute the interdecadal variation of the historical AMOC to the anthropogenic and natural signals, by analyzing multiple climate and surface-forced ocean model simulations together with direct observational data. Our analysis suggests that an extensive weakening of the AMOC occurred in the 2000s, as evident from the surface-forced ocean model simulations, and was primarily driven by anthropogenic forcing and possibly augmented by natural variability. However, since the early 2010s, the natural component of the AMOC has greatly strengthened due to the development of a strong positive North Atlantic Oscillation. The enhanced natural AMOC signal in turn acted to oppose the anthropogenic weakening signal, leading to a near stalling of the AMOC weakening. Further analysis suggests that the tug-of-war between the natural and anthropogenic signals will likely continue in the next several years.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信