Weakening origin of hydrogen bond in ionic liquid at the electrified interface

IF 3.5 3区 工程技术 Q2 ENGINEERING, CHEMICAL
AIChE Journal Pub Date : 2024-12-06 DOI:10.1002/aic.18660
Junfeng Lu, Tinglan Sun, Yumiao Lu, Hongyan He, Yanlei Wang
{"title":"Weakening origin of hydrogen bond in ionic liquid at the electrified interface","authors":"Junfeng Lu, Tinglan Sun, Yumiao Lu, Hongyan He, Yanlei Wang","doi":"10.1002/aic.18660","DOIUrl":null,"url":null,"abstract":"Hydrogen bonds (HBs) widely exist in applications ranging from biology to electrochemistry, where quantifying HB at the electrochemical interface poses significant challenges. Herein, we propose an approach to quantitatively decouple the electrostatic and van der Waals interactions of HBs in ionic liquids (ILs) by injecting electrons into the electrode interface. The charging process showed that the order of obtaining electrons is molybdenum disulfide > graphene > IL > boron nitride. Interestingly, the preferentially charged cations would lead to a direct reduction of coulombic interactions in HBs; in contrast, the charged substrate would repel the anion and weaken HBs indirectly. Infrared (IR) spectrum and covalent change analysis verified the charging-induced direct and indirect decoupling processes. Moreover, the energy analysis indicates that the electrostatic terms account for ~50% of HBs. These results on the weakening origin of HBs can guide the molecular design of ILs toward high-performance electrochemical applications.","PeriodicalId":120,"journal":{"name":"AIChE Journal","volume":"216 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIChE Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/aic.18660","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Hydrogen bonds (HBs) widely exist in applications ranging from biology to electrochemistry, where quantifying HB at the electrochemical interface poses significant challenges. Herein, we propose an approach to quantitatively decouple the electrostatic and van der Waals interactions of HBs in ionic liquids (ILs) by injecting electrons into the electrode interface. The charging process showed that the order of obtaining electrons is molybdenum disulfide > graphene > IL > boron nitride. Interestingly, the preferentially charged cations would lead to a direct reduction of coulombic interactions in HBs; in contrast, the charged substrate would repel the anion and weaken HBs indirectly. Infrared (IR) spectrum and covalent change analysis verified the charging-induced direct and indirect decoupling processes. Moreover, the energy analysis indicates that the electrostatic terms account for ~50% of HBs. These results on the weakening origin of HBs can guide the molecular design of ILs toward high-performance electrochemical applications.
求助全文
约1分钟内获得全文 求助全文
来源期刊
AIChE Journal
AIChE Journal 工程技术-工程:化工
CiteScore
7.10
自引率
10.80%
发文量
411
审稿时长
3.6 months
期刊介绍: The AIChE Journal is the premier research monthly in chemical engineering and related fields. This peer-reviewed and broad-based journal reports on the most important and latest technological advances in core areas of chemical engineering as well as in other relevant engineering disciplines. To keep abreast with the progressive outlook of the profession, the Journal has been expanding the scope of its editorial contents to include such fast developing areas as biotechnology, electrochemical engineering, and environmental engineering. The AIChE Journal is indeed the global communications vehicle for the world-renowned researchers to exchange top-notch research findings with one another. Subscribing to the AIChE Journal is like having immediate access to nine topical journals in the field. Articles are categorized according to the following topical areas: Biomolecular Engineering, Bioengineering, Biochemicals, Biofuels, and Food Inorganic Materials: Synthesis and Processing Particle Technology and Fluidization Process Systems Engineering Reaction Engineering, Kinetics and Catalysis Separations: Materials, Devices and Processes Soft Materials: Synthesis, Processing and Products Thermodynamics and Molecular-Scale Phenomena Transport Phenomena and Fluid Mechanics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信