Sang-Jin Jeon, Chihyun Hwang, Hyun-Seung Kim, Jonghyun Park, Jang-Yeon Hwang, Yijin Jung, Ran Choi, Min-Sang Song, Yun Jung Lee, Ji-Sang Yu, Yun-Chae Jung
{"title":"Sonochemically Prepared Nanodot Magnesium Fluoride-Based Anodeless Carbon Substrate for Simultaneously Reinforcing Interphasial and Reaction Kinetics for Sulfide-Based All-Solid-State Batteries (Adv. Energy Mater. 45/2024)","authors":"Sang-Jin Jeon, Chihyun Hwang, Hyun-Seung Kim, Jonghyun Park, Jang-Yeon Hwang, Yijin Jung, Ran Choi, Min-Sang Song, Yun Jung Lee, Ji-Sang Yu, Yun-Chae Jung","doi":"10.1002/aenm.202470197","DOIUrl":null,"url":null,"abstract":"<p><b>All-Solid-State Batteries</b></p><p>In article number 2402887, Yun Jung Lee, Ji-Sang Yu, Yun-Chae Jung, and co-workers introduce a magnesium fluoride-based carbon substrate that is converted into magnesium and lithium fluoride, which enhances the interphasial kinetics of all-solid-state batteries. The cover image visually emphasizes the converted substrates, followed by the magnesium particles forming lithium-magnesium alloy in the interphase.\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"14 45","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aenm.202470197","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aenm.202470197","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
All-Solid-State Batteries
In article number 2402887, Yun Jung Lee, Ji-Sang Yu, Yun-Chae Jung, and co-workers introduce a magnesium fluoride-based carbon substrate that is converted into magnesium and lithium fluoride, which enhances the interphasial kinetics of all-solid-state batteries. The cover image visually emphasizes the converted substrates, followed by the magnesium particles forming lithium-magnesium alloy in the interphase.
期刊介绍:
Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small.
With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics.
The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.