{"title":"Fuzzy Recurrent Stochastic Configuration Networks for Industrial Data Analytics","authors":"Dianhui Wang;Gang Dang","doi":"10.1109/TFUZZ.2024.3511695","DOIUrl":null,"url":null,"abstract":"This article presents a novel neuro-fuzzy model, termed fuzzy recurrent stochastic configuration networks (F-RSCNs), for industrial data analytics. Unlike the original recurrent stochastic configuration network (RSCN), the proposed F-RSCN is constructed by multiple subreservoirs, and each subreservoir is associated with a Takagi–Sugeno–Kang (TSK) fuzzy rule. Through this hybrid framework, first, the interpretability of the model is enhanced by incorporating fuzzy reasoning to embed the prior knowledge into the network. Then, the parameters of the neuro-fuzzy model are determined by the recurrent stochastic configuration (RSC) algorithm. This scheme not only ensures the universal approximation property and fast learning speed of the built model but also overcomes uncertain problems, such as unknown dynamic orders, arbitrary structure determination, and the sensitivity of learning parameters in modeling nonlinear dynamics. Finally, an online update of the output weights is performed using the projection algorithm, and the convergence analysis of the learning parameters is given. By integrating TSK fuzzy inference systems into RSCNs, F-RSCNs have strong fuzzy inference capability and can achieve sound performance for both learning and generalization. Comprehensive experiments show that the proposed F-RSCNs outperform other classical neuro-fuzzy and nonfuzzy models, demonstrating great potential for modeling complex industrial systems.","PeriodicalId":13212,"journal":{"name":"IEEE Transactions on Fuzzy Systems","volume":"33 4","pages":"1178-1191"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10778589/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This article presents a novel neuro-fuzzy model, termed fuzzy recurrent stochastic configuration networks (F-RSCNs), for industrial data analytics. Unlike the original recurrent stochastic configuration network (RSCN), the proposed F-RSCN is constructed by multiple subreservoirs, and each subreservoir is associated with a Takagi–Sugeno–Kang (TSK) fuzzy rule. Through this hybrid framework, first, the interpretability of the model is enhanced by incorporating fuzzy reasoning to embed the prior knowledge into the network. Then, the parameters of the neuro-fuzzy model are determined by the recurrent stochastic configuration (RSC) algorithm. This scheme not only ensures the universal approximation property and fast learning speed of the built model but also overcomes uncertain problems, such as unknown dynamic orders, arbitrary structure determination, and the sensitivity of learning parameters in modeling nonlinear dynamics. Finally, an online update of the output weights is performed using the projection algorithm, and the convergence analysis of the learning parameters is given. By integrating TSK fuzzy inference systems into RSCNs, F-RSCNs have strong fuzzy inference capability and can achieve sound performance for both learning and generalization. Comprehensive experiments show that the proposed F-RSCNs outperform other classical neuro-fuzzy and nonfuzzy models, demonstrating great potential for modeling complex industrial systems.
期刊介绍:
The IEEE Transactions on Fuzzy Systems is a scholarly journal that focuses on the theory, design, and application of fuzzy systems. It aims to publish high-quality technical papers that contribute significant technical knowledge and exploratory developments in the field of fuzzy systems. The journal particularly emphasizes engineering systems and scientific applications. In addition to research articles, the Transactions also includes a letters section featuring current information, comments, and rebuttals related to published papers.