Charles M. Greenspon, Giacomo Valle, Natalya D. Shelchkova, Taylor G. Hobbs, Ceci Verbaarschot, Thierri Callier, Ev I. Berger-Wolf, Elizaveta V. Okorokova, Brianna C. Hutchison, Efe Dogruoz, Anton R. Sobinov, Patrick M. Jordan, Jeffrey M. Weiss, Emily E. Fitzgerald, Dillan Prasad, Ashley Van Driesche, Qinpu He, Fang Liu, Robert F. Kirsch, Jonathan P. Miller, Ray C. Lee, David Satzer, Jorge Gonzalez-Martinez, Peter C. Warnke, Abidemi B. Ajiboye, Emily L. Graczyk, Michael L. Boninger, Jennifer L. Collinger, John E. Downey, Lee E. Miller, Nicholas G. Hatsopoulos, Robert A. Gaunt, Sliman J. Bensmaia
{"title":"Evoking stable and precise tactile sensations via multi-electrode intracortical microstimulation of the somatosensory cortex","authors":"Charles M. Greenspon, Giacomo Valle, Natalya D. Shelchkova, Taylor G. Hobbs, Ceci Verbaarschot, Thierri Callier, Ev I. Berger-Wolf, Elizaveta V. Okorokova, Brianna C. Hutchison, Efe Dogruoz, Anton R. Sobinov, Patrick M. Jordan, Jeffrey M. Weiss, Emily E. Fitzgerald, Dillan Prasad, Ashley Van Driesche, Qinpu He, Fang Liu, Robert F. Kirsch, Jonathan P. Miller, Ray C. Lee, David Satzer, Jorge Gonzalez-Martinez, Peter C. Warnke, Abidemi B. Ajiboye, Emily L. Graczyk, Michael L. Boninger, Jennifer L. Collinger, John E. Downey, Lee E. Miller, Nicholas G. Hatsopoulos, Robert A. Gaunt, Sliman J. Bensmaia","doi":"10.1038/s41551-024-01299-z","DOIUrl":null,"url":null,"abstract":"<p>Tactile feedback from brain-controlled bionic hands can be partially restored via intracortical microstimulation (ICMS) of the primary somatosensory cortex. In ICMS, the location of percepts depends on the electrode’s location and the percept intensity depends on the stimulation frequency and amplitude. Sensors on a bionic hand can thus be linked to somatotopically appropriate electrodes, and the contact force of each sensor can be used to determine the amplitude of a stimulus. Here we report a systematic investigation of the localization and intensity of ICMS-evoked percepts in three participants with cervical spinal cord injury. A retrospective analysis of projected fields showed that they were typically composed of a focal hotspot with diffuse borders, arrayed somatotopically in keeping with their underlying receptive fields and stable throughout the duration of the study. When testing the participants’ ability to rapidly localize a single ICMS presentation, individual electrodes typically evoked only weak sensations, making object localization and discrimination difficult. However, overlapping projected fields from multiple electrodes produced more localizable and intense sensations and allowed for a more precise use of a bionic hand.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"27 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01299-z","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Tactile feedback from brain-controlled bionic hands can be partially restored via intracortical microstimulation (ICMS) of the primary somatosensory cortex. In ICMS, the location of percepts depends on the electrode’s location and the percept intensity depends on the stimulation frequency and amplitude. Sensors on a bionic hand can thus be linked to somatotopically appropriate electrodes, and the contact force of each sensor can be used to determine the amplitude of a stimulus. Here we report a systematic investigation of the localization and intensity of ICMS-evoked percepts in three participants with cervical spinal cord injury. A retrospective analysis of projected fields showed that they were typically composed of a focal hotspot with diffuse borders, arrayed somatotopically in keeping with their underlying receptive fields and stable throughout the duration of the study. When testing the participants’ ability to rapidly localize a single ICMS presentation, individual electrodes typically evoked only weak sensations, making object localization and discrimination difficult. However, overlapping projected fields from multiple electrodes produced more localizable and intense sensations and allowed for a more precise use of a bionic hand.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.