Benyamin Haghi, Tyson Aflalo, Spencer Kellis, Charles Guan, Jorge A. Gamez de Leon, Albert Yan Huang, Nader Pouratian, Richard A. Andersen, Azita Emami
{"title":"Enhanced control of a brain–computer interface by tetraplegic participants via neural-network-mediated feature extraction","authors":"Benyamin Haghi, Tyson Aflalo, Spencer Kellis, Charles Guan, Jorge A. Gamez de Leon, Albert Yan Huang, Nader Pouratian, Richard A. Andersen, Azita Emami","doi":"10.1038/s41551-024-01297-1","DOIUrl":null,"url":null,"abstract":"<p>To infer intent, brain–computer interfaces must extract features that accurately estimate neural activity. However, the degradation of signal quality over time hinders the use of feature-engineering techniques to recover functional information. By using neural data recorded from electrode arrays implanted in the cortices of three human participants, here we show that a convolutional neural network can be used to map electrical signals to neural features by jointly optimizing feature extraction and decoding under the constraint that all the electrodes must use the same neural-network parameters. In all three participants, the neural network led to offline and online performance improvements in a cursor-control task across all metrics, outperforming the rate of threshold crossings and wavelet decomposition of the broadband neural data (among other feature-extraction techniques). We also show that the trained neural network can be used without modification for new datasets, brain areas and participants.</p>","PeriodicalId":19063,"journal":{"name":"Nature Biomedical Engineering","volume":"13 1","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Biomedical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41551-024-01297-1","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To infer intent, brain–computer interfaces must extract features that accurately estimate neural activity. However, the degradation of signal quality over time hinders the use of feature-engineering techniques to recover functional information. By using neural data recorded from electrode arrays implanted in the cortices of three human participants, here we show that a convolutional neural network can be used to map electrical signals to neural features by jointly optimizing feature extraction and decoding under the constraint that all the electrodes must use the same neural-network parameters. In all three participants, the neural network led to offline and online performance improvements in a cursor-control task across all metrics, outperforming the rate of threshold crossings and wavelet decomposition of the broadband neural data (among other feature-extraction techniques). We also show that the trained neural network can be used without modification for new datasets, brain areas and participants.
期刊介绍:
Nature Biomedical Engineering is an online-only monthly journal that was launched in January 2017. It aims to publish original research, reviews, and commentary focusing on applied biomedicine and health technology. The journal targets a diverse audience, including life scientists who are involved in developing experimental or computational systems and methods to enhance our understanding of human physiology. It also covers biomedical researchers and engineers who are engaged in designing or optimizing therapies, assays, devices, or procedures for diagnosing or treating diseases. Additionally, clinicians, who make use of research outputs to evaluate patient health or administer therapy in various clinical settings and healthcare contexts, are also part of the target audience.