Detection of Gas Inflow during the Onset of a Starburst in a Low-mass Galaxy at z = 2.45

Erin Coleman, Keerthi Vasan G.C., Yuguang Chen, 昱光 陈, Tucker Jones, Sunny Rhoades, Richard Ellis, Dan Stark, Nicha Leethochawalit, Ryan Sanders, Kris Mortensen, Karl Glazebrook and Glenn G. Kacprzak
{"title":"Detection of Gas Inflow during the Onset of a Starburst in a Low-mass Galaxy at z = 2.45","authors":"Erin Coleman, Keerthi Vasan G.C., Yuguang Chen, 昱光 陈, Tucker Jones, Sunny Rhoades, Richard Ellis, Dan Stark, Nicha Leethochawalit, Ryan Sanders, Kris Mortensen, Karl Glazebrook and Glenn G. Kacprzak","doi":"10.3847/2041-8213/ad93d0","DOIUrl":null,"url":null,"abstract":"The baryon cycle is crucial for understanding galaxy formation, as gas inflows and outflows vary throughout a galaxy’s lifetime and affect its star formation rate. Despite the necessity of accretion for galaxy growth at high redshifts, direct observations of inflowing gas have proven elusive, especially at z ≳ 2. We present a spectroscopic analysis of a galaxy at redshift z = 2.45, which exhibits signs of inflow in several ultraviolet interstellar absorption lines, with no clear outflow signatures. The absorption lines are redshifted by ∼250 km s−1 with respect to the systemic redshift, and C iv shows a prominent inverse P-Cygni profile. Simple stellar population models suggest that this galaxy has a low metallicity (∼5% solar), with a very young starburst of age ∼4 Myr dominating the ultraviolet luminosity. The gas inflow velocity and nebular velocity dispersion suggest an approximate halo mass of order ∼1011M⊙, a regime in which simulations predict that bursty star formation is common at this redshift. We conclude that this system is likely in the beginning of a cycle of bursty star formation, where inflow and star formation rates are high, but where supernovae and other feedback processes have not yet launched strong outflows. In this scenario, we expect the inflow-dominated phase to be observable (e.g., with net redshifted interstellar medium absorption) for only a short timescale after a starburst onset. This result represents a promising avenue for probing the full baryon cycle, including inflows, during the formative phases of low-mass galaxies at high redshifts.","PeriodicalId":501814,"journal":{"name":"The Astrophysical Journal Letters","volume":"111 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/2041-8213/ad93d0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The baryon cycle is crucial for understanding galaxy formation, as gas inflows and outflows vary throughout a galaxy’s lifetime and affect its star formation rate. Despite the necessity of accretion for galaxy growth at high redshifts, direct observations of inflowing gas have proven elusive, especially at z ≳ 2. We present a spectroscopic analysis of a galaxy at redshift z = 2.45, which exhibits signs of inflow in several ultraviolet interstellar absorption lines, with no clear outflow signatures. The absorption lines are redshifted by ∼250 km s−1 with respect to the systemic redshift, and C iv shows a prominent inverse P-Cygni profile. Simple stellar population models suggest that this galaxy has a low metallicity (∼5% solar), with a very young starburst of age ∼4 Myr dominating the ultraviolet luminosity. The gas inflow velocity and nebular velocity dispersion suggest an approximate halo mass of order ∼1011M⊙, a regime in which simulations predict that bursty star formation is common at this redshift. We conclude that this system is likely in the beginning of a cycle of bursty star formation, where inflow and star formation rates are high, but where supernovae and other feedback processes have not yet launched strong outflows. In this scenario, we expect the inflow-dominated phase to be observable (e.g., with net redshifted interstellar medium absorption) for only a short timescale after a starburst onset. This result represents a promising avenue for probing the full baryon cycle, including inflows, during the formative phases of low-mass galaxies at high redshifts.
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信