Feature Engineering for the Prediction of Scoliosis in 5q-Spinal Muscular Atrophy

IF 8.9 1区 医学
Tu-Lan Vu-Han, Vikram Sunkara, Rodrigo Bermudez-Schettino, Jakob Schwechten, Robin Runge, Carsten Perka, Tobias Winkler, Sebastian Pokutta, Claudia Weiß, Matthias Pumberger
{"title":"Feature Engineering for the Prediction of Scoliosis in 5q-Spinal Muscular Atrophy","authors":"Tu-Lan Vu-Han, Vikram Sunkara, Rodrigo Bermudez-Schettino, Jakob Schwechten, Robin Runge, Carsten Perka, Tobias Winkler, Sebastian Pokutta, Claudia Weiß, Matthias Pumberger","doi":"10.1002/jcsm.13599","DOIUrl":null,"url":null,"abstract":"5q-Spinal muscular atrophy (SMA) is now one of the 5% treatable rare diseases worldwide. As disease-modifying therapies alter disease progression and patient phenotypes, paediatricians and consulting disciplines face new unknowns in their treatment decisions. Conclusions made from historical patient data sets are now mostly limited, and new approaches are needed to ensure our continued best standard-of-care practices for this exceptional patient group. Here, we present a data-driven machine learning approach to a rare disease data set to predict spinal muscular atrophy (SMA)-associated scoliosis.","PeriodicalId":186,"journal":{"name":"Journal of Cachexia, Sarcopenia and Muscle","volume":"82 1","pages":""},"PeriodicalIF":8.9000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cachexia, Sarcopenia and Muscle","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jcsm.13599","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

5q-Spinal muscular atrophy (SMA) is now one of the 5% treatable rare diseases worldwide. As disease-modifying therapies alter disease progression and patient phenotypes, paediatricians and consulting disciplines face new unknowns in their treatment decisions. Conclusions made from historical patient data sets are now mostly limited, and new approaches are needed to ensure our continued best standard-of-care practices for this exceptional patient group. Here, we present a data-driven machine learning approach to a rare disease data set to predict spinal muscular atrophy (SMA)-associated scoliosis.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cachexia, Sarcopenia and Muscle
Journal of Cachexia, Sarcopenia and Muscle Medicine-Orthopedics and Sports Medicine
自引率
12.40%
发文量
0
期刊介绍: The Journal of Cachexia, Sarcopenia, and Muscle is a prestigious, peer-reviewed international publication committed to disseminating research and clinical insights pertaining to cachexia, sarcopenia, body composition, and the physiological and pathophysiological alterations occurring throughout the lifespan and in various illnesses across the spectrum of life sciences. This journal serves as a valuable resource for physicians, biochemists, biologists, dieticians, pharmacologists, and students alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信