Three-dimensional landscape features impact on urban surface wind velocity during a heatwave: Relative contribution and marginal effect

IF 6 2区 工程技术 Q1 ENVIRONMENTAL SCIENCES
Junda Huang, Yuncai Wang, Mangmang Wang
{"title":"Three-dimensional landscape features impact on urban surface wind velocity during a heatwave: Relative contribution and marginal effect","authors":"Junda Huang, Yuncai Wang, Mangmang Wang","doi":"10.1016/j.uclim.2024.102227","DOIUrl":null,"url":null,"abstract":"Accelerating the flow of surface air through urban areas at a faster rate is one of the important nature-based solutions for reducing the threat of urban overheating. Previous studies have focused on analyzing the correlation between two-dimensional landscape patterns and sky conditions. However, the relative contribution of three-dimensional (3D) landscape features to urban wind and the marginal effect during a heatwave remain unclear. In this study, the Weather Research and Forecasting (WRF) model was used to simulate the development of the wind field during heat events with weak synoptic wind. The regions were clustered based on land cover characteristics. The impact of 3D landscape features on the wind velocities in each cluster was further explored. Results revealed that ventilation corridors predominantly occurred in the morning, dissipating by midday. Diurnal wind velocities were primarily influenced by Forest Canopy Density (FCD), Building Congestion (BC), and Landscape Shape. Specifically, in suburban areas, the negative effect on surface wind velocities stabilized when BC exceeded 0.12. This phenomenon also occurred when the FCDs were higher than 0.75. Based on these findings, the study proposes urban planning strategies aimed at enhancing natural ventilation in cities, assisting planners in developing sustainable cities with cool winds.","PeriodicalId":48626,"journal":{"name":"Urban Climate","volume":"8 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban Climate","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.uclim.2024.102227","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accelerating the flow of surface air through urban areas at a faster rate is one of the important nature-based solutions for reducing the threat of urban overheating. Previous studies have focused on analyzing the correlation between two-dimensional landscape patterns and sky conditions. However, the relative contribution of three-dimensional (3D) landscape features to urban wind and the marginal effect during a heatwave remain unclear. In this study, the Weather Research and Forecasting (WRF) model was used to simulate the development of the wind field during heat events with weak synoptic wind. The regions were clustered based on land cover characteristics. The impact of 3D landscape features on the wind velocities in each cluster was further explored. Results revealed that ventilation corridors predominantly occurred in the morning, dissipating by midday. Diurnal wind velocities were primarily influenced by Forest Canopy Density (FCD), Building Congestion (BC), and Landscape Shape. Specifically, in suburban areas, the negative effect on surface wind velocities stabilized when BC exceeded 0.12. This phenomenon also occurred when the FCDs were higher than 0.75. Based on these findings, the study proposes urban planning strategies aimed at enhancing natural ventilation in cities, assisting planners in developing sustainable cities with cool winds.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Urban Climate
Urban Climate Social Sciences-Urban Studies
CiteScore
9.70
自引率
9.40%
发文量
286
期刊介绍: Urban Climate serves the scientific and decision making communities with the publication of research on theory, science and applications relevant to understanding urban climatic conditions and change in relation to their geography and to demographic, socioeconomic, institutional, technological and environmental dynamics and global change. Targeted towards both disciplinary and interdisciplinary audiences, this journal publishes original research papers, comprehensive review articles, book reviews, and short communications on topics including, but not limited to, the following: Urban meteorology and climate[...] Urban environmental pollution[...] Adaptation to global change[...] Urban economic and social issues[...] Research Approaches[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信