The fast bearing diagnosis based on adaptive GSR of fault feature amplification in scale-transformed fractional oscillator.

Kehan Chen, Ruoqi Zhang, Lin Meng, Xingyuan Zheng, Kun Wang, Huiqi Wang
{"title":"The fast bearing diagnosis based on adaptive GSR of fault feature amplification in scale-transformed fractional oscillator.","authors":"Kehan Chen, Ruoqi Zhang, Lin Meng, Xingyuan Zheng, Kun Wang, Huiqi Wang","doi":"10.1016/j.isatra.2024.11.044","DOIUrl":null,"url":null,"abstract":"<p><p>From the noise-assisted perspective of stochastic resonance (SR), fractional system has been adopted to enhance the diagnostic performance of mechanical faults by utilizing the previous state information in mechanical degradation process, but the computation is extremely time-consuming. To address this challenge, we develop a fast diagnosis method leveraging the mechanism of generalized SR (GSR)-based active energy conversion in fluctuating-damping fractional oscillator (FDFO). Through the analysis of system stationary response, we propose a theoretical index known as fault feature amplification (FFA), which effectively replaces the time-consuming numerical solution in multi-parameter optimization, leading to a remarkable reduction in the time complexity of the adaptive diagnosis algorithm. This improvement brings about significant benefits, notably simplifying the diagnosis flow. Based on the results of performance evaluation in diagnosing simulated bearing signals, the proposed method exhibits a comprehensive superiority in identifying ability and diagnosis efficiency. Finally, this method has been further validated in experimental diagnosis, especially for some challenging cases, providing strong support for engineering applications, particularly in the fast diagnosis of complex operating environments.</p>","PeriodicalId":94059,"journal":{"name":"ISA transactions","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISA transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.isatra.2024.11.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

From the noise-assisted perspective of stochastic resonance (SR), fractional system has been adopted to enhance the diagnostic performance of mechanical faults by utilizing the previous state information in mechanical degradation process, but the computation is extremely time-consuming. To address this challenge, we develop a fast diagnosis method leveraging the mechanism of generalized SR (GSR)-based active energy conversion in fluctuating-damping fractional oscillator (FDFO). Through the analysis of system stationary response, we propose a theoretical index known as fault feature amplification (FFA), which effectively replaces the time-consuming numerical solution in multi-parameter optimization, leading to a remarkable reduction in the time complexity of the adaptive diagnosis algorithm. This improvement brings about significant benefits, notably simplifying the diagnosis flow. Based on the results of performance evaluation in diagnosing simulated bearing signals, the proposed method exhibits a comprehensive superiority in identifying ability and diagnosis efficiency. Finally, this method has been further validated in experimental diagnosis, especially for some challenging cases, providing strong support for engineering applications, particularly in the fast diagnosis of complex operating environments.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信