Local changes in potassium ions regulate input integration in active dendrites.

IF 9.8 1区 生物学 Q1 Agricultural and Biological Sciences
PLoS Biology Pub Date : 2024-12-04 eCollection Date: 2024-12-01 DOI:10.1371/journal.pbio.3002935
Malthe S Nordentoft, Naoya Takahashi, Mathias S Heltberg, Mogens H Jensen, Rune N Rasmussen, Athanasia Papoutsi
{"title":"Local changes in potassium ions regulate input integration in active dendrites.","authors":"Malthe S Nordentoft, Naoya Takahashi, Mathias S Heltberg, Mogens H Jensen, Rune N Rasmussen, Athanasia Papoutsi","doi":"10.1371/journal.pbio.3002935","DOIUrl":null,"url":null,"abstract":"<p><p>During neuronal activity, the extracellular concentration of potassium ions ([K+]o) increases substantially above resting levels, yet it remains unclear what role these [K+]o changes play in the dendritic integration of synaptic inputs. We here used mathematical formulations and biophysical modeling to explore the role of synaptic activity-dependent K+ changes in dendritic segments of a visual cortex pyramidal neuron, receiving inputs tuned to stimulus orientation. We found that the spatial arrangement of inputs dictates the magnitude of [K+]o changes in the dendrites: Dendritic segments receiving similarly tuned inputs can attain substantially higher [K+]o increases than segments receiving diversely tuned inputs. These [K+]o elevations in turn increase dendritic excitability, leading to more robust and prolonged dendritic spikes. Ultimately, these local effects amplify the gain of neuronal input-output transformations, causing higher orientation-tuned somatic firing rates without compromising orientation selectivity. Our results suggest that local, activity-dependent [K+]o changes in dendrites may act as a \"volume knob\" that determines the impact of synaptic inputs on feature-tuned neuronal firing.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"22 12","pages":"e3002935"},"PeriodicalIF":9.8000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649091/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002935","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

During neuronal activity, the extracellular concentration of potassium ions ([K+]o) increases substantially above resting levels, yet it remains unclear what role these [K+]o changes play in the dendritic integration of synaptic inputs. We here used mathematical formulations and biophysical modeling to explore the role of synaptic activity-dependent K+ changes in dendritic segments of a visual cortex pyramidal neuron, receiving inputs tuned to stimulus orientation. We found that the spatial arrangement of inputs dictates the magnitude of [K+]o changes in the dendrites: Dendritic segments receiving similarly tuned inputs can attain substantially higher [K+]o increases than segments receiving diversely tuned inputs. These [K+]o elevations in turn increase dendritic excitability, leading to more robust and prolonged dendritic spikes. Ultimately, these local effects amplify the gain of neuronal input-output transformations, causing higher orientation-tuned somatic firing rates without compromising orientation selectivity. Our results suggest that local, activity-dependent [K+]o changes in dendrites may act as a "volume knob" that determines the impact of synaptic inputs on feature-tuned neuronal firing.

局部钾离子的变化调节活性树突的输入整合。
在神经元活动期间,细胞外钾离子([K+]o)浓度显著高于静息水平,但尚不清楚这些[K+]o的变化在突触输入的树突整合中起什么作用。我们在此使用数学公式和生物物理模型来探索突触活动依赖的K+变化在视觉皮层锥体神经元的树突节段中的作用,接收调谐到刺激方向的输入。我们发现输入的空间安排决定了树突[K+]o变化的幅度:接受类似调谐输入的树突片段比接受不同调谐输入的片段可以获得更高的[K+]o增长。这些[K+]o的升高反过来又增加了树突的兴奋性,导致更坚固和延长的树突尖峰。最终,这些局部效应放大了神经元输入输出转换的增益,在不影响定向选择性的情况下,导致更高的定向调节体细胞放电率。我们的研究结果表明,树突中局部的、活动依赖的[K+]o变化可能起到“音量旋钮”的作用,决定了突触输入对特征调谐神经元放电的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
PLoS Biology
PLoS Biology BIOCHEMISTRY & MOLECULAR BIOLOGY-BIOLOGY
CiteScore
15.40
自引率
2.00%
发文量
359
审稿时长
3-8 weeks
期刊介绍: PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions. The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public. PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信