The velar chord and dynamic integration of the gular valve in crocodylians.

4区 医学 Q2 Agricultural and Biological Sciences
Anatomical Record Pub Date : 2024-12-05 DOI:10.1002/ar.25608
Bruce A Young, Michael Cramberg, Olivia G Young
{"title":"The velar chord and dynamic integration of the gular valve in crocodylians.","authors":"Bruce A Young, Michael Cramberg, Olivia G Young","doi":"10.1002/ar.25608","DOIUrl":null,"url":null,"abstract":"<p><p>Crocodylians evolved a unique gular valve that is capable of creating a water-tight seal between the oral and pharyngeal cavities, allowing the animal to safely submerge with an open mouth. The gular valve has traditionally been described as consisting of two separate parts: an active mobile ventral portion (consisting of the tongue and portions of the hyolingual apparatus) and a dorsal portion, which is a static fold on the hard palate (often termed the palatal velum). The results of the present study argue that the two portions of the gular valve are functionally integrated, not separate, and that the dorsal portion (herein the dorsal gular fold) is a dynamic element the shape and tension of which are influenced by active and passive forces. Using gross dissection, histology, and DiceCT, the present study documents a previously underscribed component of the gular valve, the velar chord, which links the hyolingual apparatus to the dorsal gular fold, functionally integrating the two halves of the gular valve. Through endoscopic videography and a variety of manipulations on living crocodylians, this study demonstrates that changes in the tension on the velar chord directly alter the shape and tension of the dorsal gular fold. The shape changes observed in the dorsal gular fold could be accommodated by a shallow depression in the ventral surface of the palatine bones, herein termed the velar fossa. The velar fossa is a prominent feature of Alligator mississippiensis and was observed in other crocodilians; however, a survey of living and fossil crocodylians demonstrated that the velar fossa is not a universal feature in this clade. Understanding the functional linkage between the dorsal and ventral portions of the gular valve has implications beyond the dive reflex of crocodylians, since active manipulation of the dorsal gular fold likely plays a role in a variety of behavioral and physiological processes such as deglutition and vocalization.</p>","PeriodicalId":50793,"journal":{"name":"Anatomical Record","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/ar.25608","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Crocodylians evolved a unique gular valve that is capable of creating a water-tight seal between the oral and pharyngeal cavities, allowing the animal to safely submerge with an open mouth. The gular valve has traditionally been described as consisting of two separate parts: an active mobile ventral portion (consisting of the tongue and portions of the hyolingual apparatus) and a dorsal portion, which is a static fold on the hard palate (often termed the palatal velum). The results of the present study argue that the two portions of the gular valve are functionally integrated, not separate, and that the dorsal portion (herein the dorsal gular fold) is a dynamic element the shape and tension of which are influenced by active and passive forces. Using gross dissection, histology, and DiceCT, the present study documents a previously underscribed component of the gular valve, the velar chord, which links the hyolingual apparatus to the dorsal gular fold, functionally integrating the two halves of the gular valve. Through endoscopic videography and a variety of manipulations on living crocodylians, this study demonstrates that changes in the tension on the velar chord directly alter the shape and tension of the dorsal gular fold. The shape changes observed in the dorsal gular fold could be accommodated by a shallow depression in the ventral surface of the palatine bones, herein termed the velar fossa. The velar fossa is a prominent feature of Alligator mississippiensis and was observed in other crocodilians; however, a survey of living and fossil crocodylians demonstrated that the velar fossa is not a universal feature in this clade. Understanding the functional linkage between the dorsal and ventral portions of the gular valve has implications beyond the dive reflex of crocodylians, since active manipulation of the dorsal gular fold likely plays a role in a variety of behavioral and physiological processes such as deglutition and vocalization.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Anatomical Record
Anatomical Record Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
4.30
自引率
0.00%
发文量
0
期刊介绍: The Anatomical Record
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信