Comediation of voltage gating and ion charge in MXene membrane for controllable and selective monovalent cation separation

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xu Wang, Haiguang Zhang, Gaoliang Wei, Jiajian Xing, Shuo Chen, Xie Quan
{"title":"Comediation of voltage gating and ion charge in MXene membrane for controllable and selective monovalent cation separation","authors":"Xu Wang,&nbsp;Haiguang Zhang,&nbsp;Gaoliang Wei,&nbsp;Jiajian Xing,&nbsp;Shuo Chen,&nbsp;Xie Quan","doi":"10.1126/sciadv.ado3998","DOIUrl":null,"url":null,"abstract":"<div >Artificial ion channels with controllable mono/monovalent cation separation fulfill important roles in biomedicine, ion separation, and energy conversion. However, it remains a daunting challenge to develop an artificial ion channel similar to biological ion channels due to ion-ion competitive transport and lack of ion-gating ability of channels. Here, we report a conductive MXene membrane with polydopamine-confined angstrom-scale channels and propose a voltage gating and ion charge comediation strategy to concurrently achieve gated and selective mono/monovalent cation separation. The membrane shows a highly switchable “on-off” ratio of ∼9.9 for K<sup>+</sup> transport and an excellent K<sup>+</sup>/Li<sup>+</sup> selectivity of 40.9, outperforming the ion selectivity of reported membranes with electrical gating (typically 1.5 to 6). Theoretical simulations reveal that the introduced high-charge cations such as Mg<sup>2+</sup> enable the preferential distribution of target K<sup>+</sup> over competing Li<sup>+</sup> at the channel entrance, and the surface potential reduces the ionic transport energy barrier for allowing K<sup>+</sup> to pass quickly through the channel.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 49","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616687/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ado3998","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Artificial ion channels with controllable mono/monovalent cation separation fulfill important roles in biomedicine, ion separation, and energy conversion. However, it remains a daunting challenge to develop an artificial ion channel similar to biological ion channels due to ion-ion competitive transport and lack of ion-gating ability of channels. Here, we report a conductive MXene membrane with polydopamine-confined angstrom-scale channels and propose a voltage gating and ion charge comediation strategy to concurrently achieve gated and selective mono/monovalent cation separation. The membrane shows a highly switchable “on-off” ratio of ∼9.9 for K+ transport and an excellent K+/Li+ selectivity of 40.9, outperforming the ion selectivity of reported membranes with electrical gating (typically 1.5 to 6). Theoretical simulations reveal that the introduced high-charge cations such as Mg2+ enable the preferential distribution of target K+ over competing Li+ at the channel entrance, and the surface potential reduces the ionic transport energy barrier for allowing K+ to pass quickly through the channel.

Abstract Image

MXene膜中电压门控和离子电荷的调节对一价阳离子的可控和选择性分离。
具有可控单/单价阳离子分离的人工离子通道在生物医学、离子分离、能量转换等领域发挥着重要作用。然而,由于离子离子竞争输运和离子通道缺乏离子门控能力,开发类似生物离子通道的人工离子通道仍然是一个艰巨的挑战。在这里,我们报道了一种具有多多巴胺限制的埃级通道的导电MXene膜,并提出了一种电压门控和离子电荷调解策略,以同时实现门控和选择性的单/单价阳离子分离。该膜显示出K+传输的高度可切换的“开关”比为~ 9.9,K+/Li+的选择性为40.9,优于已有报道的具有电门控的膜(通常为1.5至6)的离子选择性。理论模拟表明,引入的高电荷阳离子(如Mg2+)使目标K+在通道入口优先分布,而不是竞争的Li+。表面电位降低了离子传递能垒,使K+能够快速通过通道。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
文献相关原料
公司名称
产品信息
麦克林
Cesium chloride (CsCl)
麦克林
Potassium chloride (KCl)
麦克林
Sodium chloride (NaCl)
麦克林
Lithium fluoride (LiF)
阿拉丁
Potassium hydroxide (KOH)
阿拉丁
Barium chloride (BaCl2)
阿拉丁
Magnesium chloride (MgCl2)
阿拉丁
Calcium chloride (CaCl2)
阿拉丁
Lithium chloride (LiCl)
阿拉丁
Dopamine hydrochloride
阿拉丁
Potassium hydroxide (KOH)
阿拉丁
Barium chloride (BaCl2)
阿拉丁
Magnesium chloride (MgCl2)
阿拉丁
Calcium chloride (CaCl2)
阿拉丁
Lithium chloride (LiCl)
阿拉丁
Dopamine hydrochloride
阿拉丁
Potassium hydroxide (KOH)
阿拉丁
Barium chloride (BaCl2)
阿拉丁
Magnesium chloride (MgCl2)
阿拉丁
Calcium chloride (CaCl2)
阿拉丁
Lithium chloride (LiCl)
阿拉丁
Dopamine hydrochloride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信