Arabidopsis histone acetyltransferase complex coordinates cytoplasmic histone acetylation and nuclear chromatin accessibility.

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Science Advances Pub Date : 2024-12-06 Epub Date: 2024-12-04 DOI:10.1126/sciadv.adp1840
Chan-Juan Wu, Xin Xu, Dan-Yang Yuan, Zhen-Zhen Liu, Lian-Mei Tan, Yin-Na Su, Lin Li, She Chen, Xin-Jian He
{"title":"Arabidopsis histone acetyltransferase complex coordinates cytoplasmic histone acetylation and nuclear chromatin accessibility.","authors":"Chan-Juan Wu, Xin Xu, Dan-Yang Yuan, Zhen-Zhen Liu, Lian-Mei Tan, Yin-Na Su, Lin Li, She Chen, Xin-Jian He","doi":"10.1126/sciadv.adp1840","DOIUrl":null,"url":null,"abstract":"<p><p>Conserved type B histone acetyltransferases are recognized for their role in acetylating newly synthesized histones in the cytoplasm of eukaryotes. However, their involvement in regulating chromatin within the nucleus remains unclear. Our study shows that the <i>Arabidopsis thaliana</i> type B histone acetyltransferase HAG2 interacts with the histone chaperones MSI2, MSI3, and NASP, as well as the histones H3 and H4, forming a complex in both the cytoplasm and the nucleus. Within this complex, HAG2 and MSI2/3 constitute a histone acetylation module essential for acetylating histone H4 in the cytoplasm. Furthermore, this module works together with NASP to regulate histone acetylation, chromatin accessibility, and gene transcription in the nucleus. This complex enhances chromatin accessibility near transcription start sites while reducing accessibility near transcription termination sites. Our findings reveal a distinct role for the <i>Arabidopsis</i> type B histone acetyltransferase in the nucleus, shedding light on the coordination between cytoplasmic histone acetylation and nuclear chromatin regulation in plants.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 49","pages":"eadp1840"},"PeriodicalIF":11.7000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11616720/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adp1840","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Conserved type B histone acetyltransferases are recognized for their role in acetylating newly synthesized histones in the cytoplasm of eukaryotes. However, their involvement in regulating chromatin within the nucleus remains unclear. Our study shows that the Arabidopsis thaliana type B histone acetyltransferase HAG2 interacts with the histone chaperones MSI2, MSI3, and NASP, as well as the histones H3 and H4, forming a complex in both the cytoplasm and the nucleus. Within this complex, HAG2 and MSI2/3 constitute a histone acetylation module essential for acetylating histone H4 in the cytoplasm. Furthermore, this module works together with NASP to regulate histone acetylation, chromatin accessibility, and gene transcription in the nucleus. This complex enhances chromatin accessibility near transcription start sites while reducing accessibility near transcription termination sites. Our findings reveal a distinct role for the Arabidopsis type B histone acetyltransferase in the nucleus, shedding light on the coordination between cytoplasmic histone acetylation and nuclear chromatin regulation in plants.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信