Ashlesha Gogate, Kiran Kaur, Raida Khalil, Mahmoud Bashtawi, Mary Ann Morris, Kimberly Goodspeed, Patricia Evans, Maria H Chahrour
{"title":"The genetic landscape of autism spectrum disorder in an ancestrally diverse cohort.","authors":"Ashlesha Gogate, Kiran Kaur, Raida Khalil, Mahmoud Bashtawi, Mary Ann Morris, Kimberly Goodspeed, Patricia Evans, Maria H Chahrour","doi":"10.1038/s41525-024-00444-6","DOIUrl":null,"url":null,"abstract":"<p><p>Autism spectrum disorder (ASD) comprises neurodevelopmental disorders with wide variability in genetic causes and phenotypes, making it challenging to pinpoint causal genes. We performed whole exome sequencing on a modest, ancestrally diverse cohort of 195 families, including 754 individuals (222 with ASD), and identified 38,834 novel private variants. In 68 individuals with ASD (~30%), we identified 92 potentially pathogenic variants in 73 known genes, including BCORL1, CDKL5, CHAMP1, KAT6A, MECP2, and SETD1B. Additionally, we identified 158 potentially pathogenic variants in 120 candidate genes, including DLG3, GABRQ, KALRN, KCTD16, and SLC8A3. We also found 34 copy number variants in 31 individuals overlapping known ASD loci. Our work expands the catalog of ASD genetics by identifying hundreds of variants across diverse ancestral backgrounds, highlighting convergence on nervous system development and signal transduction. These findings provide insights into the genetic underpinnings of ASD and inform molecular diagnosis and potential therapeutic targets.</p>","PeriodicalId":19273,"journal":{"name":"NPJ Genomic Medicine","volume":"9 1","pages":"62"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11618689/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Genomic Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41525-024-00444-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Autism spectrum disorder (ASD) comprises neurodevelopmental disorders with wide variability in genetic causes and phenotypes, making it challenging to pinpoint causal genes. We performed whole exome sequencing on a modest, ancestrally diverse cohort of 195 families, including 754 individuals (222 with ASD), and identified 38,834 novel private variants. In 68 individuals with ASD (~30%), we identified 92 potentially pathogenic variants in 73 known genes, including BCORL1, CDKL5, CHAMP1, KAT6A, MECP2, and SETD1B. Additionally, we identified 158 potentially pathogenic variants in 120 candidate genes, including DLG3, GABRQ, KALRN, KCTD16, and SLC8A3. We also found 34 copy number variants in 31 individuals overlapping known ASD loci. Our work expands the catalog of ASD genetics by identifying hundreds of variants across diverse ancestral backgrounds, highlighting convergence on nervous system development and signal transduction. These findings provide insights into the genetic underpinnings of ASD and inform molecular diagnosis and potential therapeutic targets.
NPJ Genomic MedicineBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
1.90%
发文量
67
审稿时长
17 weeks
期刊介绍:
npj Genomic Medicine is an international, peer-reviewed journal dedicated to publishing the most important scientific advances in all aspects of genomics and its application in the practice of medicine.
The journal defines genomic medicine as "diagnosis, prognosis, prevention and/or treatment of disease and disorders of the mind and body, using approaches informed or enabled by knowledge of the genome and the molecules it encodes." Relevant and high-impact papers that encompass studies of individuals, families, or populations are considered for publication. An emphasis will include coupling detailed phenotype and genome sequencing information, both enabled by new technologies and informatics, to delineate the underlying aetiology of disease. Clinical recommendations and/or guidelines of how that data should be used in the clinical management of those patients in the study, and others, are also encouraged.