{"title":"A continuous mode of action of nitric oxide in hard-to-heal wound healing.","authors":"David A Bell, C Michael Miller, Rhonda Sullivan","doi":"10.12968/jowc.2024.0004","DOIUrl":null,"url":null,"abstract":"<p><p>Nitric oxide (NO) is one of the most studied molecules in medical science. The role of NO as an endogenous regulator of inflammation, as an antibacterial agent and as an endogenous gasotransmitter is well established. Even so, despite a plethora of excellent wound healing data, hard-to-heal (chronic) wounds are of epidemic proportions, and still growing in number. However, yet to be established and sorely needed is the identification of a single, continuous NO mechanism of action (MoA), where phase-to-phase variance in the complex sequence of cellular and molecular wound healing may elucidate the potential for placing hard-to-heal wounds on positive healing trajectories. Hence, the objectives of this review were to: identify salient MoAs for NO in each phase of skin wound healing; and to select and validate a single MoA that is both ubiquitous and continuous in NO across acute and hard-to-heal wound sequences, and which potentiates the ability to supplementally motivate and guide the recovery of a hard-to-heal wound onto a positive healing trajectory. The search began by selecting a detailed, multipart wound healing model. Next, as guided by the literature, was the identification of salient NO functionalities for each model segment. These modes of action were then be used to identify and validate a single NO MoA that is continuous across the healing spectrum. Finally, by using the principle of 'super position' of two continuous functions, this acute healing NO MoA solution was compared to a similar solution set describing a hard-to-heal or chronic wound. As both solution sets are continuous in a NO function, the resultant 'overlay' then helped to identify and guide the use of a NO MoA capable of placing any hard-to-heal wound on a positive healing trajectory.</p>","PeriodicalId":17590,"journal":{"name":"Journal of wound care","volume":"33 12","pages":"912-925"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of wound care","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12968/jowc.2024.0004","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Nitric oxide (NO) is one of the most studied molecules in medical science. The role of NO as an endogenous regulator of inflammation, as an antibacterial agent and as an endogenous gasotransmitter is well established. Even so, despite a plethora of excellent wound healing data, hard-to-heal (chronic) wounds are of epidemic proportions, and still growing in number. However, yet to be established and sorely needed is the identification of a single, continuous NO mechanism of action (MoA), where phase-to-phase variance in the complex sequence of cellular and molecular wound healing may elucidate the potential for placing hard-to-heal wounds on positive healing trajectories. Hence, the objectives of this review were to: identify salient MoAs for NO in each phase of skin wound healing; and to select and validate a single MoA that is both ubiquitous and continuous in NO across acute and hard-to-heal wound sequences, and which potentiates the ability to supplementally motivate and guide the recovery of a hard-to-heal wound onto a positive healing trajectory. The search began by selecting a detailed, multipart wound healing model. Next, as guided by the literature, was the identification of salient NO functionalities for each model segment. These modes of action were then be used to identify and validate a single NO MoA that is continuous across the healing spectrum. Finally, by using the principle of 'super position' of two continuous functions, this acute healing NO MoA solution was compared to a similar solution set describing a hard-to-heal or chronic wound. As both solution sets are continuous in a NO function, the resultant 'overlay' then helped to identify and guide the use of a NO MoA capable of placing any hard-to-heal wound on a positive healing trajectory.
期刊介绍:
Journal of Wound Care (JWC) is the definitive wound-care journal and the leading source of up-to-date research and clinical information on everything related to tissue viability. The journal was first launched in 1992 and aimed at catering to the needs of the multidisciplinary team. Published monthly, the journal’s international audience includes nurses, doctors and researchers specialising in wound management and tissue viability, as well as generalists wishing to enhance their practice.
In addition to cutting edge and state-of-the-art research and practice articles, JWC also covers topics related to wound-care management, education and novel therapies, as well as JWC cases supplements, a supplement dedicated solely to case reports and case series in wound care. All articles are rigorously peer-reviewed by a panel of international experts, comprised of clinicians, nurses and researchers.
Specifically, JWC publishes:
High quality evidence on all aspects of wound care, including leg ulcers, pressure ulcers, the diabetic foot, burns, surgical wounds, wound infection and more
The latest developments and innovations in wound care through both preclinical and preliminary clinical trials of potential new treatments worldwide
In-depth prospective studies of new treatment applications, as well as high-level research evidence on existing treatments
Clinical case studies providing information on how to deal with complex wounds
Comprehensive literature reviews on current concepts and practice, including cost-effectiveness
Updates on the activities of wound care societies around the world.