High vector competence for chikungunya virus but heavily reduced locomotor activity of Aedes albopictus from Germany at low temperatures.

IF 3 2区 医学 Q1 PARASITOLOGY
Renke Lühken, Leif Rauhöft, Björn Pluskota, Unchana Lange, Michelle Helms, Norbert Becker, Jonas Schmidt-Chanasit, Carola Kuhn, Egbert Tannich, Stephanie Jansen, Anna Heitmann
{"title":"High vector competence for chikungunya virus but heavily reduced locomotor activity of Aedes albopictus from Germany at low temperatures.","authors":"Renke Lühken, Leif Rauhöft, Björn Pluskota, Unchana Lange, Michelle Helms, Norbert Becker, Jonas Schmidt-Chanasit, Carola Kuhn, Egbert Tannich, Stephanie Jansen, Anna Heitmann","doi":"10.1186/s13071-024-06594-x","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The incidence of human infections caused by arthropod-borne viruses, such as the chikungunya virus (CHIKV), has increased globally due to a number of factors, such as climate change and globalization. The exotic mosquito species Aedes albopictus is a significant vector for CHIKV, raising concerns about its transmission potential in temperate regions, including Central Europe. We have therefore investigated the vector competence of Ae. albopictus for CHIKV at constant and fluctuating temperatures between 15 °C and 24 °C to assess the transmission risk in Europe.</p><p><strong>Methods: </strong>Aedes albopictus mosquitoes were reared and artificially infected with CHIKV. Infection rates and transmission efficiencies (TEs) were determined after 14 days of incubation at constant and fluctuating (± 5 °C) mean temperatures of 15 °C, 18 °C, 21 °C and 24 °C. In addition, mosquito locomotor activity was measured under the same fluctuating temperature conditions. A risk map for CHIKV transmission in Europe was generated combining temperature data and the current distribution of Ae. albopictus.</p><p><strong>Results: </strong>CHIKV transmission was observed at all tested temperatures. The highest TEs were recorded at fluctuating temperatures of 18 °C (54.3%) and 21 °C (58.6%), while the lowest TE was observed at a constant temperature of 15 °C (5.6%). TEs at fluctuating temperatures of 15 °C and 24 °C were the same (32.5%). Mosquito activity showed a nocturnal unimodal activity pattern with a peak during the start of the scotophase (hour 20). The proportion of active mosquitoes per hour increased with temperature and was nearly zero at 15 °C. The risk map indicated that regions in Southern and Central Europe, including recently invaded areas north of the Alps, have temperatures theoretically allowing CHIKV transmission for at least some days per year.</p><p><strong>Conclusions: </strong>While CHIKV can be transmitted by Ae. albopictus at 15 °C, the activity of this mosquito is strongly decreased at this temperature, likely reducing the transmission risk. These findings emphasize the importance of considering both vector competence and mosquito activity when assessing the risk of arbovirus transmission in temperate regions. Further studies are needed to validate these laboratory findings under field conditions.</p>","PeriodicalId":19793,"journal":{"name":"Parasites & Vectors","volume":"17 1","pages":"502"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619113/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasites & Vectors","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13071-024-06594-x","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The incidence of human infections caused by arthropod-borne viruses, such as the chikungunya virus (CHIKV), has increased globally due to a number of factors, such as climate change and globalization. The exotic mosquito species Aedes albopictus is a significant vector for CHIKV, raising concerns about its transmission potential in temperate regions, including Central Europe. We have therefore investigated the vector competence of Ae. albopictus for CHIKV at constant and fluctuating temperatures between 15 °C and 24 °C to assess the transmission risk in Europe.

Methods: Aedes albopictus mosquitoes were reared and artificially infected with CHIKV. Infection rates and transmission efficiencies (TEs) were determined after 14 days of incubation at constant and fluctuating (± 5 °C) mean temperatures of 15 °C, 18 °C, 21 °C and 24 °C. In addition, mosquito locomotor activity was measured under the same fluctuating temperature conditions. A risk map for CHIKV transmission in Europe was generated combining temperature data and the current distribution of Ae. albopictus.

Results: CHIKV transmission was observed at all tested temperatures. The highest TEs were recorded at fluctuating temperatures of 18 °C (54.3%) and 21 °C (58.6%), while the lowest TE was observed at a constant temperature of 15 °C (5.6%). TEs at fluctuating temperatures of 15 °C and 24 °C were the same (32.5%). Mosquito activity showed a nocturnal unimodal activity pattern with a peak during the start of the scotophase (hour 20). The proportion of active mosquitoes per hour increased with temperature and was nearly zero at 15 °C. The risk map indicated that regions in Southern and Central Europe, including recently invaded areas north of the Alps, have temperatures theoretically allowing CHIKV transmission for at least some days per year.

Conclusions: While CHIKV can be transmitted by Ae. albopictus at 15 °C, the activity of this mosquito is strongly decreased at this temperature, likely reducing the transmission risk. These findings emphasize the importance of considering both vector competence and mosquito activity when assessing the risk of arbovirus transmission in temperate regions. Further studies are needed to validate these laboratory findings under field conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Parasites & Vectors
Parasites & Vectors 医学-寄生虫学
CiteScore
6.30
自引率
9.40%
发文量
433
审稿时长
1.4 months
期刊介绍: Parasites & Vectors is an open access, peer-reviewed online journal dealing with the biology of parasites, parasitic diseases, intermediate hosts, vectors and vector-borne pathogens. Manuscripts published in this journal will be available to all worldwide, with no barriers to access, immediately following acceptance. However, authors retain the copyright of their material and may use it, or distribute it, as they wish. Manuscripts on all aspects of the basic and applied biology of parasites, intermediate hosts, vectors and vector-borne pathogens will be considered. In addition to the traditional and well-established areas of science in these fields, we also aim to provide a vehicle for publication of the rapidly developing resources and technology in parasite, intermediate host and vector genomics and their impacts on biological research. We are able to publish large datasets and extensive results, frequently associated with genomic and post-genomic technologies, which are not readily accommodated in traditional journals. Manuscripts addressing broader issues, for example economics, social sciences and global climate change in relation to parasites, vectors and disease control, are also welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信