{"title":"Insights into lncRNA-mediated regulatory networks in Hevea brasiliensis under anthracnose stress.","authors":"Yanluo Zeng, Tianbin Guo, Liping Feng, Zhuoda Yin, Hongli Luo, Hongyan Yin","doi":"10.1186/s13007-024-01301-4","DOIUrl":null,"url":null,"abstract":"<p><p>In recent years, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have emerged as critical regulators in plant biology, governing complex gene regulatory networks. In the context of disease resistance in Hevea brasiliensis, the rubber tree, significant progress has been made in understanding its response to anthracnose disease, a serious threat posed by fungal pathogens impacting global rubber tree cultivation and latex quality. While advances have been achieved in unraveling the genetic and molecular foundations underlying anthracnose resistance, gaps persist in comprehending the regulatory roles of lncRNAs and miRNAs under such stress conditions. The specific contributions of these non-coding RNAs in orchestrating molecular responses against anthracnose in H. brasiliensis remain unclear, necessitating further exploration to uncover strategies that increase disease resistance. Here, we integrate lncRNA sequencing, miRNA sequencing, and degradome sequencing to decipher the regulatory landscape of lncRNAs and miRNAs in H. brasiliensis under anthracnose stress. We investigated the genomic and regulatory profiles of differentially expressed lncRNAs (DE-lncRNAs) and constructed a competitive endogenous RNA (ceRNA) regulatory network in response to pathogenic infection. Additionally, we elucidated the functional roles of HblncRNA29219 and its antisense hbr-miR482a, as well as the miR390-TAS3-ARF pathway, in enhancing anthracnose resistance. These findings provide valuable insights into plant-microbe interactions and hold promising implications for advancing agricultural crop protection strategies. This comprehensive analysis sheds light on non-coding RNA-mediated regulatory mechanisms in H. brasiliensis under pathogen stress, establishing a foundation for innovative approaches aimed at enhancing crop resilience and sustainability in agriculture.</p>","PeriodicalId":20100,"journal":{"name":"Plant Methods","volume":"20 1","pages":"182"},"PeriodicalIF":4.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11619270/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Methods","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13007-024-01301-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) have emerged as critical regulators in plant biology, governing complex gene regulatory networks. In the context of disease resistance in Hevea brasiliensis, the rubber tree, significant progress has been made in understanding its response to anthracnose disease, a serious threat posed by fungal pathogens impacting global rubber tree cultivation and latex quality. While advances have been achieved in unraveling the genetic and molecular foundations underlying anthracnose resistance, gaps persist in comprehending the regulatory roles of lncRNAs and miRNAs under such stress conditions. The specific contributions of these non-coding RNAs in orchestrating molecular responses against anthracnose in H. brasiliensis remain unclear, necessitating further exploration to uncover strategies that increase disease resistance. Here, we integrate lncRNA sequencing, miRNA sequencing, and degradome sequencing to decipher the regulatory landscape of lncRNAs and miRNAs in H. brasiliensis under anthracnose stress. We investigated the genomic and regulatory profiles of differentially expressed lncRNAs (DE-lncRNAs) and constructed a competitive endogenous RNA (ceRNA) regulatory network in response to pathogenic infection. Additionally, we elucidated the functional roles of HblncRNA29219 and its antisense hbr-miR482a, as well as the miR390-TAS3-ARF pathway, in enhancing anthracnose resistance. These findings provide valuable insights into plant-microbe interactions and hold promising implications for advancing agricultural crop protection strategies. This comprehensive analysis sheds light on non-coding RNA-mediated regulatory mechanisms in H. brasiliensis under pathogen stress, establishing a foundation for innovative approaches aimed at enhancing crop resilience and sustainability in agriculture.
期刊介绍:
Plant Methods is an open access, peer-reviewed, online journal for the plant research community that encompasses all aspects of technological innovation in the plant sciences.
There is no doubt that we have entered an exciting new era in plant biology. The completion of the Arabidopsis genome sequence, and the rapid progress being made in other plant genomics projects are providing unparalleled opportunities for progress in all areas of plant science. Nevertheless, enormous challenges lie ahead if we are to understand the function of every gene in the genome, and how the individual parts work together to make the whole organism. Achieving these goals will require an unprecedented collaborative effort, combining high-throughput, system-wide technologies with more focused approaches that integrate traditional disciplines such as cell biology, biochemistry and molecular genetics.
Technological innovation is probably the most important catalyst for progress in any scientific discipline. Plant Methods’ goal is to stimulate the development and adoption of new and improved techniques and research tools and, where appropriate, to promote consistency of methodologies for better integration of data from different laboratories.