Ju Hyun Min, Nur Istianah, Jeong Hwa Jang, Hyeon Ji Jeon, Young Hoon Jung
{"title":"Effects of Peptidase Treatment on Properties of Yeast Protein as an Alternative Protein Source.","authors":"Ju Hyun Min, Nur Istianah, Jeong Hwa Jang, Hyeon Ji Jeon, Young Hoon Jung","doi":"10.4014/jmb.2409.09062","DOIUrl":null,"url":null,"abstract":"<p><p>Yeast protein, high-quality and high-content microbial protein, can serve as alternative sources of protein. This study examined the structural and functional characteristics of yeast protein through enzymatic treatment using different ratios of alcalase (endo-type) and prozyme 2000P (exo-type) including 2:1 (A2P1), 1:1 (A1P1), and 1:2 (A1P2). After enzymatic hydrolysis, a significant increase in protein solubility from less than 3.1% in untreated proteins to around 16%, particularly at pH 2 or pH 12. Furthermore, a maximum degree of hydrolysis of over 85% was achieved after enzyme treatment. Among them, the highest value of 87.73% was achieved at yeast protein treated by A1P2. Scanning electron microscopy images revealed varied surface morphologies, with exhibiting an increased surface area, particularly after treatment using A2P1. Next, yeast protein treated with A2P1 also demonstrated a superior emulsion stability index (3364.17). However, the antioxidant capacity was higher in proteins treated with A1P2 (78.30%). In addition, the elevated levels of certain amino acids, specifically leucine, lysine, phenylalanine, valine, and arginine, thereby indicating an enhanced amino acid profile was observed. Overall, yeast proteins treated with complex enzymes exhibited improved functionality and potential for diverse food applications.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2596-2608"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11729370/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2409.09062","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Yeast protein, high-quality and high-content microbial protein, can serve as alternative sources of protein. This study examined the structural and functional characteristics of yeast protein through enzymatic treatment using different ratios of alcalase (endo-type) and prozyme 2000P (exo-type) including 2:1 (A2P1), 1:1 (A1P1), and 1:2 (A1P2). After enzymatic hydrolysis, a significant increase in protein solubility from less than 3.1% in untreated proteins to around 16%, particularly at pH 2 or pH 12. Furthermore, a maximum degree of hydrolysis of over 85% was achieved after enzyme treatment. Among them, the highest value of 87.73% was achieved at yeast protein treated by A1P2. Scanning electron microscopy images revealed varied surface morphologies, with exhibiting an increased surface area, particularly after treatment using A2P1. Next, yeast protein treated with A2P1 also demonstrated a superior emulsion stability index (3364.17). However, the antioxidant capacity was higher in proteins treated with A1P2 (78.30%). In addition, the elevated levels of certain amino acids, specifically leucine, lysine, phenylalanine, valine, and arginine, thereby indicating an enhanced amino acid profile was observed. Overall, yeast proteins treated with complex enzymes exhibited improved functionality and potential for diverse food applications.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.