A cough simulator constructed from off-the-shelf and 3D-printed components.

IF 1.5 4区 医学 Q4 ENVIRONMENTAL SCIENCES
Lee Portnoff, Taekhee Lee
{"title":"A cough simulator constructed from off-the-shelf and 3D-printed components.","authors":"Lee Portnoff, Taekhee Lee","doi":"10.1080/15459624.2024.2427090","DOIUrl":null,"url":null,"abstract":"<p><p>The development of low-cost research equipment is crucial for enhancing accessibility in scientific research, particularly in the field of respiratory disease transmission. This study presents a novel, customizable cough simulator designed for ad-hoc studies that require precise control over ejection velocity and aerosol size. Constructed from off-the-shelf parts and 3D-printed components, this programmable, piston-driven simulator offers an affordable solution for researchers. Its performance has been validated, demonstrating suitability for evaluating fluid flow and monitoring ejected particles that correspond to the velocities of mouth breathing and coughing. Potential applications for this device include assessments of aerosol ventilation, disinfection, and the efficacy of personal protective equipment, all of which contribute to advancing scientific understanding and public health outcomes.</p>","PeriodicalId":16599,"journal":{"name":"Journal of Occupational and Environmental Hygiene","volume":" ","pages":"1-8"},"PeriodicalIF":1.5000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Occupational and Environmental Hygiene","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1080/15459624.2024.2427090","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The development of low-cost research equipment is crucial for enhancing accessibility in scientific research, particularly in the field of respiratory disease transmission. This study presents a novel, customizable cough simulator designed for ad-hoc studies that require precise control over ejection velocity and aerosol size. Constructed from off-the-shelf parts and 3D-printed components, this programmable, piston-driven simulator offers an affordable solution for researchers. Its performance has been validated, demonstrating suitability for evaluating fluid flow and monitoring ejected particles that correspond to the velocities of mouth breathing and coughing. Potential applications for this device include assessments of aerosol ventilation, disinfection, and the efficacy of personal protective equipment, all of which contribute to advancing scientific understanding and public health outcomes.

由现成的和3d打印组件构建的咳嗽模拟器。
开发低成本的研究设备对于提高科学研究的可及性至关重要,特别是在呼吸道疾病传播领域。本研究提出了一种新颖的、可定制的咳嗽模拟器,专为需要精确控制喷射速度和气溶胶大小的特别研究而设计。这种可编程的活塞驱动模拟器由现成的零件和3d打印组件组成,为研究人员提供了经济实惠的解决方案。其性能已得到验证,证明适合评估流体流动和监测喷出的颗粒,这些颗粒对应于口腔呼吸和咳嗽的速度。该设备的潜在应用包括评估气溶胶通风、消毒和个人防护装备的功效,所有这些都有助于促进科学理解和公共卫生成果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Occupational and Environmental Hygiene
Journal of Occupational and Environmental Hygiene 环境科学-公共卫生、环境卫生与职业卫生
CiteScore
3.30
自引率
10.00%
发文量
81
审稿时长
12-24 weeks
期刊介绍: The Journal of Occupational and Environmental Hygiene ( JOEH ) is a joint publication of the American Industrial Hygiene Association (AIHA®) and ACGIH®. The JOEH is a peer-reviewed journal devoted to enhancing the knowledge and practice of occupational and environmental hygiene and safety by widely disseminating research articles and applied studies of the highest quality. The JOEH provides a written medium for the communication of ideas, methods, processes, and research in core and emerging areas of occupational and environmental hygiene. Core domains include, but are not limited to: exposure assessment, control strategies, ergonomics, and risk analysis. Emerging domains include, but are not limited to: sensor technology, emergency preparedness and response, changing workforce, and management and analysis of "big" data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信