Reduced GATA1 levels are associated with ineffective erythropoiesis in sickle cell anemia.

IF 8.2 1区 医学 Q1 HEMATOLOGY
Sara El Hoss, Panicos Shangaris, John Brewin, Maria Eleni Psychogyiou, Cecilia Ng, Lauren Pedler, Helen Rooks, Érica M F Gotardo, Lucas F S Gushiken, Pâmela L Brito, Kypros H Nicolaides, Nicola Conran, David C Rees, John Strouboulis
{"title":"Reduced GATA1 levels are associated with ineffective erythropoiesis in sickle cell anemia.","authors":"Sara El Hoss, Panicos Shangaris, John Brewin, Maria Eleni Psychogyiou, Cecilia Ng, Lauren Pedler, Helen Rooks, Érica M F Gotardo, Lucas F S Gushiken, Pâmela L Brito, Kypros H Nicolaides, Nicola Conran, David C Rees, John Strouboulis","doi":"10.3324/haematol.2024.286010","DOIUrl":null,"url":null,"abstract":"<p><p>Ineffective erythropoiesis (IE) is defined as the abnormal differentiation and excessive destruction of erythroblasts in the marrow, accompanied by an expanded progenitor compartment and relative reduction in the production of reticulocytes. It is a defining feature of many types of anemia, including beta-thalassemia. GATA1 is an essential transcription factor for erythroid differentiation, known to be implicated in hematological conditions presenting with IE, including beta-thalassemia and congenital dyserythropoietic anemia. However, little is known about the role of GATA1 in the erythropoietic defects recently described in sickle cell anemia (SCA). In the present study, we performed a detailed characterization of the role of GATA1 and ineffective erythropoiesis in SCA using both invitro and in-vivo assay systems. We demonstrate a significant decrease in GATA1 protein levels during SCA erythropoiesis and a concomitant increase in oxidative stress. Furthermore, we found that an increase in the activity of the inflammatory caspase, caspase 1, was driving the decrease in GATA1 levels during SCA erythropoiesis and that, upon inhibition of caspase 1 activity, SCA erythropoiesis was rescued and GATA1 levels partially restored. Our study further elucidates the defect in erythropoiesis in SCA, and may therefore help in the development of novel approaches to normalise the bone marrow niche prior to stem cell transplantation, or facilitate the production of healthy stem cells for gene therapy.</p>","PeriodicalId":12964,"journal":{"name":"Haematologica","volume":" ","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Haematologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3324/haematol.2024.286010","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Ineffective erythropoiesis (IE) is defined as the abnormal differentiation and excessive destruction of erythroblasts in the marrow, accompanied by an expanded progenitor compartment and relative reduction in the production of reticulocytes. It is a defining feature of many types of anemia, including beta-thalassemia. GATA1 is an essential transcription factor for erythroid differentiation, known to be implicated in hematological conditions presenting with IE, including beta-thalassemia and congenital dyserythropoietic anemia. However, little is known about the role of GATA1 in the erythropoietic defects recently described in sickle cell anemia (SCA). In the present study, we performed a detailed characterization of the role of GATA1 and ineffective erythropoiesis in SCA using both invitro and in-vivo assay systems. We demonstrate a significant decrease in GATA1 protein levels during SCA erythropoiesis and a concomitant increase in oxidative stress. Furthermore, we found that an increase in the activity of the inflammatory caspase, caspase 1, was driving the decrease in GATA1 levels during SCA erythropoiesis and that, upon inhibition of caspase 1 activity, SCA erythropoiesis was rescued and GATA1 levels partially restored. Our study further elucidates the defect in erythropoiesis in SCA, and may therefore help in the development of novel approaches to normalise the bone marrow niche prior to stem cell transplantation, or facilitate the production of healthy stem cells for gene therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Haematologica
Haematologica 医学-血液学
CiteScore
14.10
自引率
2.00%
发文量
349
审稿时长
3-6 weeks
期刊介绍: Haematologica is a journal that publishes articles within the broad field of hematology. It reports on novel findings in basic, clinical, and translational research. Scope: The scope of the journal includes reporting novel research results that: Have a significant impact on understanding normal hematology or the development of hematological diseases. Are likely to bring important changes to the diagnosis or treatment of hematological diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信