{"title":"Ischemic Stroke Induces ROS Accumulation, Maladaptive Mitophagy, and Neuronal Apoptosis in Minipigs.","authors":"Jie Chen, Yanan Bie, Yajin Guan, Wen Liu, Fei Xu, Tianping Liu, Zilong Meng, Mengqi Gao, Jiawei Liu, Shuilin Xie, Weiwang Gu","doi":"10.4014/jmb.2409.09003","DOIUrl":null,"url":null,"abstract":"<p><p>Reactive oxygen species (ROS)-induced adaptive/maladaptive mitophagy plays an essential role in the pathophysiology of acute ischemic stroke (AIS). However, most studies have been conducted using rodent models, which limits their clinical application. In this study, we aimed to develop porcine models of permanent stroke and observe the pathophysiological alterations caused by acute ischemic stroke, focusing on ROS-induced mitophagy. Miniature pigs were subjected to lateral frontotemporal electrocoagulation, which resulted in permanent middle cerebral artery occlusion. We investigated global brain damage and mechanisms of adaptive/maladaptive mitophagy caused by ROS and global brain inflammation after AIS. An early neuroinflammatory response was observed in the ipsilateral hemisphere. ROS levels were significantly elevated in the ipsilateral hemisphere and slightly elevated in the contralateral hemisphere. ROS accumulation may be attributed to the increased production and impaired elimination of ROS. In addition, mitophagy and apoptosis were detected in the ischemic core, which may be attributed to ROS accumulation. We propose \"distinct-area targeting\" interventions aimed at maladaptive mitophagy within the ischemic core of the infarct hemisphere, which may provide new therapeutic targets for the treatment of AIS.</p>","PeriodicalId":16481,"journal":{"name":"Journal of microbiology and biotechnology","volume":"34 12","pages":"2648-2661"},"PeriodicalIF":2.5000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of microbiology and biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4014/jmb.2409.09003","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/14 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Reactive oxygen species (ROS)-induced adaptive/maladaptive mitophagy plays an essential role in the pathophysiology of acute ischemic stroke (AIS). However, most studies have been conducted using rodent models, which limits their clinical application. In this study, we aimed to develop porcine models of permanent stroke and observe the pathophysiological alterations caused by acute ischemic stroke, focusing on ROS-induced mitophagy. Miniature pigs were subjected to lateral frontotemporal electrocoagulation, which resulted in permanent middle cerebral artery occlusion. We investigated global brain damage and mechanisms of adaptive/maladaptive mitophagy caused by ROS and global brain inflammation after AIS. An early neuroinflammatory response was observed in the ipsilateral hemisphere. ROS levels were significantly elevated in the ipsilateral hemisphere and slightly elevated in the contralateral hemisphere. ROS accumulation may be attributed to the increased production and impaired elimination of ROS. In addition, mitophagy and apoptosis were detected in the ischemic core, which may be attributed to ROS accumulation. We propose "distinct-area targeting" interventions aimed at maladaptive mitophagy within the ischemic core of the infarct hemisphere, which may provide new therapeutic targets for the treatment of AIS.
期刊介绍:
The Journal of Microbiology and Biotechnology (JMB) is a monthly international journal devoted to the advancement and dissemination of scientific knowledge pertaining to microbiology, biotechnology, and related academic disciplines. It covers various scientific and technological aspects of Molecular and Cellular Microbiology, Environmental Microbiology and Biotechnology, Food Biotechnology, and Biotechnology and Bioengineering (subcategories are listed below). Launched in March 1991, the JMB is published by the Korean Society for Microbiology and Biotechnology (KMB) and distributed worldwide.