{"title":"Fabrication of resin cements capable of disintegrating by near-infrared radiation intended for cemented prosthesis removal.","authors":"Noboru Kajimoto, Michito Maruta, Hirogo Minamisawa, Taira Sato, Kenichi Hamada, Kanji Tsuru","doi":"10.4012/dmj.2024-170","DOIUrl":null,"url":null,"abstract":"<p><p>The material concept of resin cements capable of disintegrating due to near-infrared (NIR) radiation was verified. The cements were prepared by adding silicon carbide (SiC), which heats upon absorbing NIR rays, and thermally expandable particles (TEPs) to 4-META/MMA-TBB resin cement. The microtensile bond strength (µTBS) and cytocompatibility of the cements were evaluated. The resin cements with 5 mass% SiC and 20-40 mass% TEPs had significantly lower µTBS after NIR radiation than before NIR radiation, and their cytocompatibility was not decreased by SiC and TEPs additions. Furthermore, in vitro thermal damage tests were performed using the resin cement with 5 mass% SiC and 20 mass% TEPs, a typical composition. The results demonstrated conditions that significantly reduced µTBS and minimized thermal damage by NIR radiation. Although these data are only proof of concept, the possibility that dental devices bonded with these cements could be detached by NIR radiation was demonstrated.</p>","PeriodicalId":11065,"journal":{"name":"Dental materials journal","volume":" ","pages":"24-33"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental materials journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.4012/dmj.2024-170","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
The material concept of resin cements capable of disintegrating due to near-infrared (NIR) radiation was verified. The cements were prepared by adding silicon carbide (SiC), which heats upon absorbing NIR rays, and thermally expandable particles (TEPs) to 4-META/MMA-TBB resin cement. The microtensile bond strength (µTBS) and cytocompatibility of the cements were evaluated. The resin cements with 5 mass% SiC and 20-40 mass% TEPs had significantly lower µTBS after NIR radiation than before NIR radiation, and their cytocompatibility was not decreased by SiC and TEPs additions. Furthermore, in vitro thermal damage tests were performed using the resin cement with 5 mass% SiC and 20 mass% TEPs, a typical composition. The results demonstrated conditions that significantly reduced µTBS and minimized thermal damage by NIR radiation. Although these data are only proof of concept, the possibility that dental devices bonded with these cements could be detached by NIR radiation was demonstrated.
期刊介绍:
Dental Materials Journal is a peer review journal published by the Japanese Society for Dental Materials and Devises aiming to introduce the progress of the basic and applied sciences in dental materials and biomaterials. The dental materials-related clinical science and instrumental technologies are also within the scope of this journal. The materials dealt include synthetic polymers, ceramics, metals and tissue-derived biomaterials. Forefront dental materials and biomaterials used in developing filed, such as tissue engineering, bioengineering and artificial intelligence, are positively considered for the review as well. Recent acceptance rate of the submitted manuscript in the journal is around 30%.