Association of early life cardiovascular risk factors with grey matter structure in young adults in the United Kingdom: the ALSPAC study.

IF 9.7 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
EBioMedicine Pub Date : 2024-12-01 Epub Date: 2024-12-03 DOI:10.1016/j.ebiom.2024.105490
Holly T Haines, Sana Suri, Raihaan Patel, Scott T Chiesa
{"title":"Association of early life cardiovascular risk factors with grey matter structure in young adults in the United Kingdom: the ALSPAC study.","authors":"Holly T Haines, Sana Suri, Raihaan Patel, Scott T Chiesa","doi":"10.1016/j.ebiom.2024.105490","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cumulative exposures to obesity, hypertension, and physical inactivity from midlife (40-65 years) onwards are three known cardiovascular risk factors for dementia and associated cerebral structural damage. Exactly how early in the lifespan sensitive periods for exposure to these risk factors begin is yet to be established, specifically with respect to onset of cerebral structural changes. We aimed to investigate whether cardiovascular risk across childhood and adolescence is already associated with cerebral structure in regions previously linked with dementia, during young adulthood.</p><p><strong>Methods: </strong>Participants were selected from the Avon Longitudinal Study of Parents and Children (ALSPAC), a UK-based prospective cohort of young people, if they had participated in a neuroimaging sub-study (N = 862). We entered data from repeated clinical assessments into mixed-effects models to estimate baseline and rate of change in body mass index (BMI) and mean arterial pressure (MAP) between ages 7-17 years, and physical activity (PA) between 11-15 years. Linear models assessed whether cardiovascular risk factors were associated with grey matter macrostructural indices (cortical thickness, surface area, volume) in young adulthood (∼20 years).</p><p><strong>Findings: </strong>BMI was found to be associated with grey matter macrostructure in nodes of Default Mode Network previously found to show atrophy in dementia. Baseline BMI was associated with thickness of precuneus cortex and entorhinal surface area, whilst rate of change in BMI across childhood and adolescence was associated with thickness of parahippocampal and middle temporal gyri and inferior parietal cortex in addition to entorhinal and parahippocampal surface area. Further, we identified associations between baseline MAP and PA and entorhinal surface area. Exploratory whole-brain analyses revealed associations between baseline and rate of change in these cardiovascular risk factors and the cortical thickness, surface area, and volume of broader groups of cortical and subcortical regions.</p><p><strong>Interpretation: </strong>Findings provide preliminary evidence that cerebral structural differences in regions linked to dementia in old age may be legacy of developmental differences associated with cardiovascular risk exposure during early life. This has relevance for lifespan models of dementia risk and timing of preventative interventions. Further work is required to generalise findings beyond this predominantly white, male, and middle-class sample to more diverse cohorts.</p><p><strong>Funding: </strong>NIHR Oxford Health BRC (NIHR203316), Wellcome Trust (203139/Z/16/Z).</p>","PeriodicalId":11494,"journal":{"name":"EBioMedicine","volume":"110 ","pages":"105490"},"PeriodicalIF":9.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11652839/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EBioMedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ebiom.2024.105490","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cumulative exposures to obesity, hypertension, and physical inactivity from midlife (40-65 years) onwards are three known cardiovascular risk factors for dementia and associated cerebral structural damage. Exactly how early in the lifespan sensitive periods for exposure to these risk factors begin is yet to be established, specifically with respect to onset of cerebral structural changes. We aimed to investigate whether cardiovascular risk across childhood and adolescence is already associated with cerebral structure in regions previously linked with dementia, during young adulthood.

Methods: Participants were selected from the Avon Longitudinal Study of Parents and Children (ALSPAC), a UK-based prospective cohort of young people, if they had participated in a neuroimaging sub-study (N = 862). We entered data from repeated clinical assessments into mixed-effects models to estimate baseline and rate of change in body mass index (BMI) and mean arterial pressure (MAP) between ages 7-17 years, and physical activity (PA) between 11-15 years. Linear models assessed whether cardiovascular risk factors were associated with grey matter macrostructural indices (cortical thickness, surface area, volume) in young adulthood (∼20 years).

Findings: BMI was found to be associated with grey matter macrostructure in nodes of Default Mode Network previously found to show atrophy in dementia. Baseline BMI was associated with thickness of precuneus cortex and entorhinal surface area, whilst rate of change in BMI across childhood and adolescence was associated with thickness of parahippocampal and middle temporal gyri and inferior parietal cortex in addition to entorhinal and parahippocampal surface area. Further, we identified associations between baseline MAP and PA and entorhinal surface area. Exploratory whole-brain analyses revealed associations between baseline and rate of change in these cardiovascular risk factors and the cortical thickness, surface area, and volume of broader groups of cortical and subcortical regions.

Interpretation: Findings provide preliminary evidence that cerebral structural differences in regions linked to dementia in old age may be legacy of developmental differences associated with cardiovascular risk exposure during early life. This has relevance for lifespan models of dementia risk and timing of preventative interventions. Further work is required to generalise findings beyond this predominantly white, male, and middle-class sample to more diverse cohorts.

Funding: NIHR Oxford Health BRC (NIHR203316), Wellcome Trust (203139/Z/16/Z).

求助全文
约1分钟内获得全文 求助全文
来源期刊
EBioMedicine
EBioMedicine Biochemistry, Genetics and Molecular Biology-General Biochemistry,Genetics and Molecular Biology
CiteScore
17.70
自引率
0.90%
发文量
579
审稿时长
5 weeks
期刊介绍: eBioMedicine is a comprehensive biomedical research journal that covers a wide range of studies that are relevant to human health. Our focus is on original research that explores the fundamental factors influencing human health and disease, including the discovery of new therapeutic targets and treatments, the identification of biomarkers and diagnostic tools, and the investigation and modification of disease pathways and mechanisms. We welcome studies from any biomedical discipline that contribute to our understanding of disease and aim to improve human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信