Alexandra C Nowlan, Jane Choe, Hoda Tromblee, Clancy Kelahan, Karin Hellevik, Stephen D Shea
{"title":"Multisensory integration of social signals by a pathway from the basal amygdala to the auditory cortex in maternal mice.","authors":"Alexandra C Nowlan, Jane Choe, Hoda Tromblee, Clancy Kelahan, Karin Hellevik, Stephen D Shea","doi":"10.1016/j.cub.2024.10.078","DOIUrl":null,"url":null,"abstract":"<p><p>Social encounters are inherently multisensory events, yet how and where social cues of distinct sensory modalities merge and interact in the brain is poorly understood. When their pups wander away from the nest, mother mice use a combination of vocal and olfactory signals emitted by the pups to locate and retrieve them. Previous work revealed the emergence of multisensory interactions in the auditory cortex (AC) of both dams and virgins who cohabitate with pups (\"surrogates\"). Here, we identify a neural pathway that relays information about odors to the AC to be integrated with responses to sound. We found that a scattered population of glutamatergic neurons in the basal amygdala (BA) projects to the AC and responds to odors, including the smell of pups. These neurons exhibit increased activity when the female is searching for pups that terminates upon contact. Finally, we show that selective optogenetic activation of BA-AC neurons modulates responses to pup calls, and that this modulation switches from predominantly suppressive to predominantly excitatory after maternal experience. This supports an underappreciated role for the amygdala in directly shaping sensory representations in an experience-dependent manner. We propose that the BA-AC pathway supports integration of olfaction and audition to facilitate maternal care and speculate that it may carry valence information to the AC.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2024.10.078","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Social encounters are inherently multisensory events, yet how and where social cues of distinct sensory modalities merge and interact in the brain is poorly understood. When their pups wander away from the nest, mother mice use a combination of vocal and olfactory signals emitted by the pups to locate and retrieve them. Previous work revealed the emergence of multisensory interactions in the auditory cortex (AC) of both dams and virgins who cohabitate with pups ("surrogates"). Here, we identify a neural pathway that relays information about odors to the AC to be integrated with responses to sound. We found that a scattered population of glutamatergic neurons in the basal amygdala (BA) projects to the AC and responds to odors, including the smell of pups. These neurons exhibit increased activity when the female is searching for pups that terminates upon contact. Finally, we show that selective optogenetic activation of BA-AC neurons modulates responses to pup calls, and that this modulation switches from predominantly suppressive to predominantly excitatory after maternal experience. This supports an underappreciated role for the amygdala in directly shaping sensory representations in an experience-dependent manner. We propose that the BA-AC pathway supports integration of olfaction and audition to facilitate maternal care and speculate that it may carry valence information to the AC.
期刊介绍:
Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.