{"title":"Multimodal robot-assisted English writing guidance and error correction with reinforcement learning.","authors":"Ni Wang","doi":"10.3389/fnbot.2024.1483131","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>With the development of globalization and the increasing importance of English in international communication, effectively improving English writing skills has become a key focus in language learning. Traditional methods for English writing guidance and error correction have predominantly relied on rule-based approaches or statistical models, such as conventional language models and basic machine learning algorithms. While these methods can aid learners in improving their writing quality to some extent, they often suffer from limitations such as inflexibility, insufficient contextual understanding, and an inability to handle multimodal information. These shortcomings restrict their effectiveness in more complex linguistic environments.</p><p><strong>Methods: </strong>To address these challenges, this study introduces ETG-ALtrans, a multimodal robot-assisted English writing guidance and error correction technology based on an improved ALBEF model and VGG19 architecture, enhanced by reinforcement learning. The approach leverages VGG19 to extract visual features and integrates them with the ALBEF model, achieving precise alignment and fusion of images and text. This enhances the model's ability to comprehend context. Furthermore, by incorporating reinforcement learning, the model can adaptively refine its correction strategies, thereby optimizing the effectiveness of writing guidance.</p><p><strong>Results and discussion: </strong>Experimental results demonstrate that the proposed ETG-ALtrans method significantly improves the accuracy of English writing error correction and the intelligence level of writing guidance in multimodal data scenarios. Compared to traditional methods, this approach not only enhances the precision of writing suggestions but also better caters to the personalized needs of learners, thereby effectively improving their writing skills. This research is of significant importance in the field of language learning technology and offers new perspectives and methodologies for the development of future English writing assistance tools.</p>","PeriodicalId":12628,"journal":{"name":"Frontiers in Neurorobotics","volume":"18 ","pages":"1483131"},"PeriodicalIF":2.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neurorobotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3389/fnbot.2024.1483131","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: With the development of globalization and the increasing importance of English in international communication, effectively improving English writing skills has become a key focus in language learning. Traditional methods for English writing guidance and error correction have predominantly relied on rule-based approaches or statistical models, such as conventional language models and basic machine learning algorithms. While these methods can aid learners in improving their writing quality to some extent, they often suffer from limitations such as inflexibility, insufficient contextual understanding, and an inability to handle multimodal information. These shortcomings restrict their effectiveness in more complex linguistic environments.
Methods: To address these challenges, this study introduces ETG-ALtrans, a multimodal robot-assisted English writing guidance and error correction technology based on an improved ALBEF model and VGG19 architecture, enhanced by reinforcement learning. The approach leverages VGG19 to extract visual features and integrates them with the ALBEF model, achieving precise alignment and fusion of images and text. This enhances the model's ability to comprehend context. Furthermore, by incorporating reinforcement learning, the model can adaptively refine its correction strategies, thereby optimizing the effectiveness of writing guidance.
Results and discussion: Experimental results demonstrate that the proposed ETG-ALtrans method significantly improves the accuracy of English writing error correction and the intelligence level of writing guidance in multimodal data scenarios. Compared to traditional methods, this approach not only enhances the precision of writing suggestions but also better caters to the personalized needs of learners, thereby effectively improving their writing skills. This research is of significant importance in the field of language learning technology and offers new perspectives and methodologies for the development of future English writing assistance tools.
期刊介绍:
Frontiers in Neurorobotics publishes rigorously peer-reviewed research in the science and technology of embodied autonomous neural systems. Specialty Chief Editors Alois C. Knoll and Florian Röhrbein at the Technische Universität München are supported by an outstanding Editorial Board of international experts. This multidisciplinary open-access journal is at the forefront of disseminating and communicating scientific knowledge and impactful discoveries to researchers, academics and the public worldwide.
Neural systems include brain-inspired algorithms (e.g. connectionist networks), computational models of biological neural networks (e.g. artificial spiking neural nets, large-scale simulations of neural microcircuits) and actual biological systems (e.g. in vivo and in vitro neural nets). The focus of the journal is the embodiment of such neural systems in artificial software and hardware devices, machines, robots or any other form of physical actuation. This also includes prosthetic devices, brain machine interfaces, wearable systems, micro-machines, furniture, home appliances, as well as systems for managing micro and macro infrastructures. Frontiers in Neurorobotics also aims to publish radically new tools and methods to study plasticity and development of autonomous self-learning systems that are capable of acquiring knowledge in an open-ended manner. Models complemented with experimental studies revealing self-organizing principles of embodied neural systems are welcome. Our journal also publishes on the micro and macro engineering and mechatronics of robotic devices driven by neural systems, as well as studies on the impact that such systems will have on our daily life.