SURF1 Deficiency: Expanding on Disease Phenotype and Assessing Disease Burden by Describing Clinical and Biochemical Phenotype.

IF 1.7 4区 生物学 Q3 GENETICS & HEREDITY
Saima Kayani, Victor Daescu, Hamza Dahshi, Souad Messahel, Kasey Woleban, Berge A Minassian, Qinglan Ling, Steven J Gray
{"title":"SURF1 Deficiency: Expanding on Disease Phenotype and Assessing Disease Burden by Describing Clinical and Biochemical Phenotype.","authors":"Saima Kayani, Victor Daescu, Hamza Dahshi, Souad Messahel, Kasey Woleban, Berge A Minassian, Qinglan Ling, Steven J Gray","doi":"10.1002/ajmg.a.63947","DOIUrl":null,"url":null,"abstract":"<p><p>Leigh syndrome, a severe neurological disorder is commonly caused by homozygous or bi-allelic pathogenic variants in the SURF1 gene. SURF1 deficiency leads to dysfunction of Cytochrome C Oxidase (COX) activity, which is crucial for mitochondrial oxidative phosphorylation. Understanding COX activity's correlation with disease severity is essential for developing SURF1 Leigh Syndrome biomarkers. This study assesses the disease burden in SURF1 Leigh Syndrome and evaluates COX activity as a treatment biomarker. We reviewed records and questionnaires from 17 individuals, classifying them into phenotypic and genotypic groups. We compared COX activity assays in patient fibroblasts to age-matched controls, clinical data, and neuroimaging findings. Patient COX activity was at most 50% of controls, averaging 32% (p < 0.001). Common clinical features included brainstem abnormalities (93.3%), motor regression (92.3%), bi-allelic heterozygous SURF1 variants (88.2%), and delayed growth/development (35.7%). Homozygous and heterozygous nonsense/frameshift variants showed more severe phenotypes (p = 0.008) and more MRI abnormalities (p = 0.005). Significant COX activity reduction is linked to SURF1 Leigh Syndrome, with genotype influencing disease severity. Clinical and neuroimaging correlations show potential for prognostic indicators. This study lays the groundwork for future research and clinical application of COX activity as a SURF1 Leigh Syndrome biomarker.</p>","PeriodicalId":7507,"journal":{"name":"American Journal of Medical Genetics Part A","volume":" ","pages":"e63947"},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Medical Genetics Part A","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/ajmg.a.63947","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

Abstract

Leigh syndrome, a severe neurological disorder is commonly caused by homozygous or bi-allelic pathogenic variants in the SURF1 gene. SURF1 deficiency leads to dysfunction of Cytochrome C Oxidase (COX) activity, which is crucial for mitochondrial oxidative phosphorylation. Understanding COX activity's correlation with disease severity is essential for developing SURF1 Leigh Syndrome biomarkers. This study assesses the disease burden in SURF1 Leigh Syndrome and evaluates COX activity as a treatment biomarker. We reviewed records and questionnaires from 17 individuals, classifying them into phenotypic and genotypic groups. We compared COX activity assays in patient fibroblasts to age-matched controls, clinical data, and neuroimaging findings. Patient COX activity was at most 50% of controls, averaging 32% (p < 0.001). Common clinical features included brainstem abnormalities (93.3%), motor regression (92.3%), bi-allelic heterozygous SURF1 variants (88.2%), and delayed growth/development (35.7%). Homozygous and heterozygous nonsense/frameshift variants showed more severe phenotypes (p = 0.008) and more MRI abnormalities (p = 0.005). Significant COX activity reduction is linked to SURF1 Leigh Syndrome, with genotype influencing disease severity. Clinical and neuroimaging correlations show potential for prognostic indicators. This study lays the groundwork for future research and clinical application of COX activity as a SURF1 Leigh Syndrome biomarker.

SURF1缺乏:通过描述临床和生化表型扩展疾病表型和评估疾病负担。
Leigh综合征是一种严重的神经系统疾病,通常由SURF1基因的纯合或双等位致病变异引起。SURF1缺乏导致细胞色素C氧化酶(COX)活性紊乱,而COX对线粒体氧化磷酸化至关重要。了解COX活性与疾病严重程度的相关性对于开发SURF1 Leigh综合征生物标志物至关重要。本研究评估了SURF1 Leigh综合征的疾病负担,并评估了COX活性作为治疗生物标志物。我们回顾了17个个体的记录和问卷,将他们分为表型组和基因型组。我们将患者成纤维细胞的COX活性测定与年龄匹配的对照组、临床数据和神经影像学结果进行了比较。患者COX活性最多为对照组的50%,平均为32% (p
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
5.00%
发文量
432
审稿时长
2-4 weeks
期刊介绍: The American Journal of Medical Genetics - Part A (AJMG) gives you continuous coverage of all biological and medical aspects of genetic disorders and birth defects, as well as in-depth documentation of phenotype analysis within the current context of genotype/phenotype correlations. In addition to Part A , AJMG also publishes two other parts: Part B: Neuropsychiatric Genetics , covering experimental and clinical investigations of the genetic mechanisms underlying neurologic and psychiatric disorders. Part C: Seminars in Medical Genetics , guest-edited collections of thematic reviews of topical interest to the readership of AJMG .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信