Sequential activation of osteogenic microenvironment via composite peptide-modified microfluidic microspheres for promoting bone regeneration.

IF 12.8 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Biomaterials Pub Date : 2025-05-01 Epub Date: 2024-11-26 DOI:10.1016/j.biomaterials.2024.122974
Liang Wu, Tao Xu, Sen Li, Kai Sun, Ziyang Tang, Hui Xu, Yong Qiu, Zhenhua Feng, Zhen Liu, Zezhang Zhu, Xiaodong Qin
{"title":"Sequential activation of osteogenic microenvironment via composite peptide-modified microfluidic microspheres for promoting bone regeneration.","authors":"Liang Wu, Tao Xu, Sen Li, Kai Sun, Ziyang Tang, Hui Xu, Yong Qiu, Zhenhua Feng, Zhen Liu, Zezhang Zhu, Xiaodong Qin","doi":"10.1016/j.biomaterials.2024.122974","DOIUrl":null,"url":null,"abstract":"<p><p>The osteogenic microenvironment (OME) significantly influences bone repair; however, reproducing its dynamic activation and repair processes remains challenging. In this study, we designed injectable porous microspheres modified with composite peptides to investigate cascade alterations in OME and their underlying mechanisms. Poly <sub>l</sub>-lactic acid microfluidic microspheres underwent surface modifications through alkaline hydrolysis treatment, involving heterogeneous grafting of bovine serum albumin nanoparticles with stem cell-homing peptides (BNP@SKP) and BMP-2 mimicking peptides (P24), respectively. These modifications well-organized the actions of initial release and subsequent in situ grafting of peptides. Cellular experiments demonstrated varied degrees of chemotactic recruitment and osteogenic differentiation in mesenchymal stem cells. Further biological analysis revealed that BNP@SKP targeted the Ras/Erk axis and upregulated matrix metalloproteinase (MMP)2 and MMP9 expression, thereby enhancing initial chemotaxis and recruitment. In vivo studies validated the establishment of a dynamically regulated OME centered on the microspheres, resulting in increased stem cell recruitment, sequential activation of the differentiation microenvironment, and facilitation of in situ osteogenesis without ectopic ossification. In conclusion, this study successfully fabricated composite peptide-modified microspheres and systematically explored the mechanisms of bone formation through sequential activation of OME via heterogeneous grafting of signaling molecules. This provides theoretical evidence for biomaterials based on microenvironment regulation.</p>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"316 ","pages":"122974"},"PeriodicalIF":12.8000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.biomaterials.2024.122974","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The osteogenic microenvironment (OME) significantly influences bone repair; however, reproducing its dynamic activation and repair processes remains challenging. In this study, we designed injectable porous microspheres modified with composite peptides to investigate cascade alterations in OME and their underlying mechanisms. Poly l-lactic acid microfluidic microspheres underwent surface modifications through alkaline hydrolysis treatment, involving heterogeneous grafting of bovine serum albumin nanoparticles with stem cell-homing peptides (BNP@SKP) and BMP-2 mimicking peptides (P24), respectively. These modifications well-organized the actions of initial release and subsequent in situ grafting of peptides. Cellular experiments demonstrated varied degrees of chemotactic recruitment and osteogenic differentiation in mesenchymal stem cells. Further biological analysis revealed that BNP@SKP targeted the Ras/Erk axis and upregulated matrix metalloproteinase (MMP)2 and MMP9 expression, thereby enhancing initial chemotaxis and recruitment. In vivo studies validated the establishment of a dynamically regulated OME centered on the microspheres, resulting in increased stem cell recruitment, sequential activation of the differentiation microenvironment, and facilitation of in situ osteogenesis without ectopic ossification. In conclusion, this study successfully fabricated composite peptide-modified microspheres and systematically explored the mechanisms of bone formation through sequential activation of OME via heterogeneous grafting of signaling molecules. This provides theoretical evidence for biomaterials based on microenvironment regulation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials
Biomaterials 工程技术-材料科学:生物材料
CiteScore
26.00
自引率
2.90%
发文量
565
审稿时长
46 days
期刊介绍: Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信