Exploring the risk factors and clustering patterns of periodontitis in patients with different subtypes of diabetes through machine learning and cluster analysis.

IF 1.4 4区 医学 Q3 DENTISTRY, ORAL SURGERY & MEDICINE
Anna Zhao, Yuxiang Chen, Haoran Yang, Tingting Chen, Xianqi Rao, Ziliang Li
{"title":"Exploring the risk factors and clustering patterns of periodontitis in patients with different subtypes of diabetes through machine learning and cluster analysis.","authors":"Anna Zhao, Yuxiang Chen, Haoran Yang, Tingting Chen, Xianqi Rao, Ziliang Li","doi":"10.2340/aos.v83.42435","DOIUrl":null,"url":null,"abstract":"<p><strong>Aim: </strong>To analyse the risk factors contributing to the prevalence of periodontitis among clusters of patients with diabetes and to examine the clustering patterns of clinical blood biochemical indicators.</p><p><strong>Materials and methods: </strong>Data regarding clinical blood biochemical indicators and periodontitis prevalence among 1804 patients with diabetes were sourced from the National Health and Nutrition Examination Survey (NHANES) database spanning 2009 to 2014. A clinical prediction model for periodontitis risk in patients with diabetes was constructed via the XGBoost machine learning method. Furthermore, the relationships between diabetes patient clusters and periodontitis prevalence were investigated through consistent consensus clustering analysis.</p><p><strong>Results: </strong>Seventeen clinical blood biochemical indicators emerged as superior predictors of periodontitis in patients with diabetes. Patients with diabetes were subsequently categorized into two subtypes: Cluster A presented a slightly lower periodontitis prevalence (74.80%), whereas Cluster B presented a higher prevalence risk (83.68%). Differences between the two groups were considered statistically significant at a p value of ≤0.05. There was marked variability in the associations of different cluster characteristics with periodontitis prevalence.</p><p><strong>Conclusions: </strong>Machine learning combined with consensus clustering analysis revealed a greater prevalence of periodontitis among patients with diabetes mellitus in Cluster B. This cluster was characterized by a smoking habit, a lower education level, a higher income-to-poverty ratio, and higher levels of albumin (ALB g/L) and alanine aminotransferase (ALT U/L).</p>","PeriodicalId":7313,"journal":{"name":"Acta Odontologica Scandinavica","volume":"83 ","pages":"653-665"},"PeriodicalIF":1.4000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11633034/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Odontologica Scandinavica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2340/aos.v83.42435","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Aim: To analyse the risk factors contributing to the prevalence of periodontitis among clusters of patients with diabetes and to examine the clustering patterns of clinical blood biochemical indicators.

Materials and methods: Data regarding clinical blood biochemical indicators and periodontitis prevalence among 1804 patients with diabetes were sourced from the National Health and Nutrition Examination Survey (NHANES) database spanning 2009 to 2014. A clinical prediction model for periodontitis risk in patients with diabetes was constructed via the XGBoost machine learning method. Furthermore, the relationships between diabetes patient clusters and periodontitis prevalence were investigated through consistent consensus clustering analysis.

Results: Seventeen clinical blood biochemical indicators emerged as superior predictors of periodontitis in patients with diabetes. Patients with diabetes were subsequently categorized into two subtypes: Cluster A presented a slightly lower periodontitis prevalence (74.80%), whereas Cluster B presented a higher prevalence risk (83.68%). Differences between the two groups were considered statistically significant at a p value of ≤0.05. There was marked variability in the associations of different cluster characteristics with periodontitis prevalence.

Conclusions: Machine learning combined with consensus clustering analysis revealed a greater prevalence of periodontitis among patients with diabetes mellitus in Cluster B. This cluster was characterized by a smoking habit, a lower education level, a higher income-to-poverty ratio, and higher levels of albumin (ALB g/L) and alanine aminotransferase (ALT U/L).

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Odontologica Scandinavica
Acta Odontologica Scandinavica 医学-牙科与口腔外科
CiteScore
4.00
自引率
5.00%
发文量
69
审稿时长
6-12 weeks
期刊介绍: Acta Odontologica Scandinavica publishes papers conveying new knowledge within all areas of oral health and disease sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信