Online reprogramming electronic bits for N dimension fractal soft deformable structures†

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL
Soft Matter Pub Date : 2024-11-15 DOI:10.1039/D4SM01051E
Fengjiao Bin, Jiaxu Meng, Wei Chen, Ruishen Lou, Xu Li, Jiangman Sun, Shikai Jing and Dengbao Xiao
{"title":"Online reprogramming electronic bits for N dimension fractal soft deformable structures†","authors":"Fengjiao Bin, Jiaxu Meng, Wei Chen, Ruishen Lou, Xu Li, Jiangman Sun, Shikai Jing and Dengbao Xiao","doi":"10.1039/D4SM01051E","DOIUrl":null,"url":null,"abstract":"<p >Inspired by the complex fractal morphologies and deformations observed in animals and plants, an <em>N</em>-dimensional soft structure composed of stretchable electronic bits has been developed. This soft structure, capable of independent and cooperative motion, can be manipulated through the programming of bits using a machine language based on instruction encoding. This method simplifies the process of changing the bit's step temperature to control its binary state. Theoretical analysis demonstrates that the fractal dimensions and deformation morphologies of the soft structure achieve stability and extremity when the total number of programming bits exceeds eighteen. Considering strip-shaped soft structures as a case study, their ultimate deformation morphologies, covering the reachable regions of all bits, can achieve complexity comparable to that of dandelion tufts and tree crowns. Moreover, the deformation process exhibits agility akin to that of an octopus. We have prepared samples that include strip-shaped soft structures, each containing multiple pairs of bits, and a hand-shaped soft structure equipped with five pairs of bits, intended for conducting deformation programming experiments. These experimental results validated the correctness of the online reprogramming method for soft structures, showing their capability to perform a range of complex deformations, such as the “OK” gesture, and highlighting potential applications in surgical contexts. This design strategy contributes to the development of soft structures, offering contributions from both theoretical and practical perspectives.</p>","PeriodicalId":103,"journal":{"name":"Soft Matter","volume":" 1","pages":" 148-156"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soft Matter","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/sm/d4sm01051e","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inspired by the complex fractal morphologies and deformations observed in animals and plants, an N-dimensional soft structure composed of stretchable electronic bits has been developed. This soft structure, capable of independent and cooperative motion, can be manipulated through the programming of bits using a machine language based on instruction encoding. This method simplifies the process of changing the bit's step temperature to control its binary state. Theoretical analysis demonstrates that the fractal dimensions and deformation morphologies of the soft structure achieve stability and extremity when the total number of programming bits exceeds eighteen. Considering strip-shaped soft structures as a case study, their ultimate deformation morphologies, covering the reachable regions of all bits, can achieve complexity comparable to that of dandelion tufts and tree crowns. Moreover, the deformation process exhibits agility akin to that of an octopus. We have prepared samples that include strip-shaped soft structures, each containing multiple pairs of bits, and a hand-shaped soft structure equipped with five pairs of bits, intended for conducting deformation programming experiments. These experimental results validated the correctness of the online reprogramming method for soft structures, showing their capability to perform a range of complex deformations, such as the “OK” gesture, and highlighting potential applications in surgical contexts. This design strategy contributes to the development of soft structures, offering contributions from both theoretical and practical perspectives.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Soft Matter
Soft Matter 工程技术-材料科学:综合
CiteScore
6.00
自引率
5.90%
发文量
891
审稿时长
1.9 months
期刊介绍: Soft Matter is an international journal published by the Royal Society of Chemistry using Engineering-Materials Science: A Synthesis as its research focus. It publishes original research articles, review articles, and synthesis articles related to this field, reporting the latest discoveries in the relevant theoretical, practical, and applied disciplines in a timely manner, and aims to promote the rapid exchange of scientific information in this subject area. The journal is an open access journal. The journal is an open access journal and has not been placed on the alert list in the last three years.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信