{"title":"Fecal microbiota transplantation as an effective way in treating methylmercury-poisoned rats.","authors":"Yanfei Zhang, Qingxuan Liu, Hongxin Xie, Wei Zhang, Xiaoying Lin, Huifeng Zhang, Huan Yu, Yinghui Ma, Chuang Zhang, Hao Geng, Nianqiu Shi, Liwei Cui, Bai Li, Yu-Feng Li","doi":"10.1016/j.scitotenv.2024.177850","DOIUrl":null,"url":null,"abstract":"<p><p>Methylmercury (MeHg) can cause devastating neurotoxicity in animals and human beings. Gut microbiota dysbiosis has been found in MeHg-poisoned animals. Fecal microbiota transplantation (FMT) has been shown to improve clinical outcomes in a variety of diseases such as epilepsy, amyotrophic lateral sclerosis (ALS) and autism. The aim of this study was to investigate the effects of FMT on MeHg-poisoned rats. FMT treatment was applied to MeHg-poisoned rats for 14 days. The neurobehavior, weight changes, dopamine (DA), the total Hg and MeHg level were evaluated. Besides, the gut microbiota and metabolites change in feces were also checked. It was found that FMT helped weight gain, alleviated the neurological disorders, enhanced fecal mercury excretion and MeHg demethylation, reconstructed gut microbiome and promoted the production of gut-brain axis related-metabolites in MeHg-poisoned rats. This study elaborates on the therapeutic efficacy of FMT in treating of MeHg-poisoned rats, which sheds lights on the treatment of neurological diseases like Minamata Disease and even Parkinson's Disease.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"957 ","pages":"177850"},"PeriodicalIF":8.0000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177850","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Methylmercury (MeHg) can cause devastating neurotoxicity in animals and human beings. Gut microbiota dysbiosis has been found in MeHg-poisoned animals. Fecal microbiota transplantation (FMT) has been shown to improve clinical outcomes in a variety of diseases such as epilepsy, amyotrophic lateral sclerosis (ALS) and autism. The aim of this study was to investigate the effects of FMT on MeHg-poisoned rats. FMT treatment was applied to MeHg-poisoned rats for 14 days. The neurobehavior, weight changes, dopamine (DA), the total Hg and MeHg level were evaluated. Besides, the gut microbiota and metabolites change in feces were also checked. It was found that FMT helped weight gain, alleviated the neurological disorders, enhanced fecal mercury excretion and MeHg demethylation, reconstructed gut microbiome and promoted the production of gut-brain axis related-metabolites in MeHg-poisoned rats. This study elaborates on the therapeutic efficacy of FMT in treating of MeHg-poisoned rats, which sheds lights on the treatment of neurological diseases like Minamata Disease and even Parkinson's Disease.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.