Representing DNA for machine learning algorithms: A primer on one-hot, binary, and integer encodings.

IF 1.2 4区 教育学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yash Munnalal Gupta, Satwika Nindya Kirana, Somjit Homchan
{"title":"Representing DNA for machine learning algorithms: A primer on one-hot, binary, and integer encodings.","authors":"Yash Munnalal Gupta, Satwika Nindya Kirana, Somjit Homchan","doi":"10.1002/bmb.21870","DOIUrl":null,"url":null,"abstract":"<p><p>This short paper presents an educational approach to teaching three popular methods for encoding DNA sequences: one-hot encoding, binary encoding, and integer encoding. Aimed at bioinformatics and computational biology students, our learning intervention focuses on developing practical skills in implementing these essential techniques for efficient representation and analysis of genetic data. The primary goal of this study is to enhance students' understanding and practical application of DNA encoding methods, which are crucial for various computational analyses in bioinformatics. Our intervention consists of three key components: (1) a conceptual framework that contextualizes these encoding methods within broader bioinformatics applications, (2) an interactive Jupyter Notebook with Python code examples (https://github.com/yashmgupta/Representing-DNA/tree/main), and (3) a user-friendly Streamlit application for visualizing encoded sequences (https://dnaencoding.streamlit.app/) that also enables students to input their own DNA sequences and visualize the different encoding methods, further enhancing their understanding and practical experience. By combining conceptual overview with practical coding and visualization tools, our approach provides a comprehensive foundation for students to leverage these key DNA sequence encoding methods in their future work. This study contributes to bioinformatics education by offering effective, hands-on learning resources that bridge the gap between theoretical knowledge and practical application in DNA sequence analysis, preparing students for advanced research and data analysis projects in the field.</p>","PeriodicalId":8830,"journal":{"name":"Biochemistry and Molecular Biology Education","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry and Molecular Biology Education","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1002/bmb.21870","RegionNum":4,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

This short paper presents an educational approach to teaching three popular methods for encoding DNA sequences: one-hot encoding, binary encoding, and integer encoding. Aimed at bioinformatics and computational biology students, our learning intervention focuses on developing practical skills in implementing these essential techniques for efficient representation and analysis of genetic data. The primary goal of this study is to enhance students' understanding and practical application of DNA encoding methods, which are crucial for various computational analyses in bioinformatics. Our intervention consists of three key components: (1) a conceptual framework that contextualizes these encoding methods within broader bioinformatics applications, (2) an interactive Jupyter Notebook with Python code examples (https://github.com/yashmgupta/Representing-DNA/tree/main), and (3) a user-friendly Streamlit application for visualizing encoded sequences (https://dnaencoding.streamlit.app/) that also enables students to input their own DNA sequences and visualize the different encoding methods, further enhancing their understanding and practical experience. By combining conceptual overview with practical coding and visualization tools, our approach provides a comprehensive foundation for students to leverage these key DNA sequence encoding methods in their future work. This study contributes to bioinformatics education by offering effective, hands-on learning resources that bridge the gap between theoretical knowledge and practical application in DNA sequence analysis, preparing students for advanced research and data analysis projects in the field.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biochemistry and Molecular Biology Education
Biochemistry and Molecular Biology Education 生物-生化与分子生物学
CiteScore
2.60
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The aim of BAMBED is to enhance teacher preparation and student learning in Biochemistry, Molecular Biology, and related sciences such as Biophysics and Cell Biology, by promoting the world-wide dissemination of educational materials. BAMBED seeks and communicates articles on many topics, including: Innovative techniques in teaching and learning. New pedagogical approaches. Research in biochemistry and molecular biology education. Reviews on emerging areas of Biochemistry and Molecular Biology to provide background for the preparation of lectures, seminars, student presentations, dissertations, etc. Historical Reviews describing "Paths to Discovery". Novel and proven laboratory experiments that have both skill-building and discovery-based characteristics. Reviews of relevant textbooks, software, and websites. Descriptions of software for educational use. Descriptions of multimedia materials such as tutorials on various aspects of biochemistry and molecular biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信