Yuting Ma, Reagan J Dreiling, Elizabeth A Recker, Ji-Won Kim, Shelby L Shankel, Jenny Hu, Alexandra D Easley, Zachariah A Page, Tristan H Lambert, Brett P Fors
{"title":"Multimaterial Thermoset Synthesis: Switching Polymerization Mechanism with Light Dosage.","authors":"Yuting Ma, Reagan J Dreiling, Elizabeth A Recker, Ji-Won Kim, Shelby L Shankel, Jenny Hu, Alexandra D Easley, Zachariah A Page, Tristan H Lambert, Brett P Fors","doi":"10.1021/acscentsci.4c01507","DOIUrl":null,"url":null,"abstract":"<p><p>The synthesis of polymeric thermoset materials with spatially controlled physical properties using readily available resins is a grand challenge. To address this challenge, we developed a photoinitiated polymerization method that enables the spatial switching of radical and cationic polymerizations by controlling the dosage of monochromatic light. This method, which we call Switching Polymerizations by Light Titration (SPLiT), leverages the use of substoichiometric amounts of a photobuffer in combination with traditional photoacid generators. Upon exposure to a low dose of light, the photobuffer inhibits the cationic polymerization, while radical polymerization is initiated. With an increased light dosage, the buffer system saturates, leading to the formation of a strong acid that initiates a cationic polymerization of the dormant monomer. Applying this strategy, patterning is achieved by spatially varying light dosage via irradiation time or intensity allowing for simple construction of multimaterial thermosets. Importantly, by the addition of an inexpensive photobuffer, such as tetrabutylammonium chloride, commercially available resins can be implemented in grayscale vat photopolymerization 3D printing to prepare sophisticated multimodulus constructs.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 11","pages":"2125-2131"},"PeriodicalIF":12.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613345/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c01507","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The synthesis of polymeric thermoset materials with spatially controlled physical properties using readily available resins is a grand challenge. To address this challenge, we developed a photoinitiated polymerization method that enables the spatial switching of radical and cationic polymerizations by controlling the dosage of monochromatic light. This method, which we call Switching Polymerizations by Light Titration (SPLiT), leverages the use of substoichiometric amounts of a photobuffer in combination with traditional photoacid generators. Upon exposure to a low dose of light, the photobuffer inhibits the cationic polymerization, while radical polymerization is initiated. With an increased light dosage, the buffer system saturates, leading to the formation of a strong acid that initiates a cationic polymerization of the dormant monomer. Applying this strategy, patterning is achieved by spatially varying light dosage via irradiation time or intensity allowing for simple construction of multimaterial thermosets. Importantly, by the addition of an inexpensive photobuffer, such as tetrabutylammonium chloride, commercially available resins can be implemented in grayscale vat photopolymerization 3D printing to prepare sophisticated multimodulus constructs.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.