Yunjie Wen, Yutao Li, Henry C W Chu, Shibo Cheng, Yong Zeng
{"title":"Hydromechanical Modulation of Enzymatic Kinetics Using Microfluidically Configurable Nanoconfinement Arrays.","authors":"Yunjie Wen, Yutao Li, Henry C W Chu, Shibo Cheng, Yong Zeng","doi":"10.1021/acscentsci.4c01094","DOIUrl":null,"url":null,"abstract":"<p><p>Confinement of molecules occurs ubiquitously in nature and fundamentally affects their properties and reactions. Developing synthetic confinement systems capable of precise modulation of chemical reactions is critical to understanding the underlying mechanisms and to promoting numerous applications including biosensing. However, current nanoconfinement systems often require sophisticated fabrication and operation. Here we report a simplified nanoconfinement approach termed <b>C</b>onfigurable <b>H</b>ydromechanical <b>E</b>nzyme <b>M</b>odulation by <b>N</b>anoconfinement <b>L</b>andscaping <b>o</b>f <b>C</b>hemical <b>K</b>inetics (CHEMNLOCK). This approach exploits a simple micropost device to generate an array of nanogaps with tunable geometries, enabling flexible spatial modulation of the kinetics of surface-bound enzymatic reactions and substantial enhancement of single-molecule reactions. We envision that the CHEMNLOCK concept could pave a new way for developing scalable and practical nanoconfinement systems with profound impacts on biosensing and clinical diagnostics.</p>","PeriodicalId":10,"journal":{"name":"ACS Central Science","volume":"10 11","pages":"2059-2071"},"PeriodicalIF":12.7000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613295/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Central Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acscentsci.4c01094","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/27 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Confinement of molecules occurs ubiquitously in nature and fundamentally affects their properties and reactions. Developing synthetic confinement systems capable of precise modulation of chemical reactions is critical to understanding the underlying mechanisms and to promoting numerous applications including biosensing. However, current nanoconfinement systems often require sophisticated fabrication and operation. Here we report a simplified nanoconfinement approach termed Configurable Hydromechanical Enzyme Modulation by Nanoconfinement Landscaping of Chemical Kinetics (CHEMNLOCK). This approach exploits a simple micropost device to generate an array of nanogaps with tunable geometries, enabling flexible spatial modulation of the kinetics of surface-bound enzymatic reactions and substantial enhancement of single-molecule reactions. We envision that the CHEMNLOCK concept could pave a new way for developing scalable and practical nanoconfinement systems with profound impacts on biosensing and clinical diagnostics.
期刊介绍:
ACS Central Science publishes significant primary reports on research in chemistry and allied fields where chemical approaches are pivotal. As the first fully open-access journal by the American Chemical Society, it covers compelling and important contributions to the broad chemistry and scientific community. "Central science," a term popularized nearly 40 years ago, emphasizes chemistry's central role in connecting physical and life sciences, and fundamental sciences with applied disciplines like medicine and engineering. The journal focuses on exceptional quality articles, addressing advances in fundamental chemistry and interdisciplinary research.