Development of TiF4-Dendrimer complex gel as an anti-demineralization agent for dentin: An in vitro study.

IF 4.6 1区 医学 Q1 DENTISTRY, ORAL SURGERY & MEDICINE
Taraneh Estedlal, Ladan Ranjbar Omrani, Khosrou Abdi, Niyousha Rafeie, Zohreh Moradi
{"title":"Development of TiF4-Dendrimer complex gel as an anti-demineralization agent for dentin: An in vitro study.","authors":"Taraneh Estedlal, Ladan Ranjbar Omrani, Khosrou Abdi, Niyousha Rafeie, Zohreh Moradi","doi":"10.1016/j.dental.2024.11.007","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The anti-caries effects of titanium tetrafluoride (TiF4) are well-documented, but its low pH challenges clinical application. This study evaluated PEG-citrate dendrimer as a carrier to enhance TiF4 stability and efficacy.</p><p><strong>Methods: </strong>PEG-citrate dendrimer and TiF4-dendrimer gel were synthesized, and their structures confirmed using Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance (1H NMR), and Liquid Chromatography-Mass Spectrometry (LC-MS). Thirty-six intact human teeth were prepared, randomly divided into three groups (n = 12) and subjected to pH cycling with the following treatments: titanium tetrafluoride (T), dendrimer (D), and dendrimer with TiF4 (TD). Vickers microhardness and Raman spectroscopy evaluated dentin demineralization. EDS analysis measured titanium and fluoride penetration into dentin in T and TD groups and mineral content (calcium and phosphorus) in all groups.</p><p><strong>Results: </strong>The T group showed the highest microhardness loss (p < 0.001), followed by D and TD groups. EDS analysis revealed no significant difference in titanium and fluoride content between the surface and subsurface in TD (p = 0.344), while T had more titanium on the surface (p < 0.001). TD had higher subsurface calcium content compared to T (p = 0.008). Raman spectroscopy revealed significant changes in phosphate-to-amide and carbonate-to-amide ratios before and after pH cycling in all groups (p < 0.001), with no statistical differences among the groups.</p><p><strong>Conclusion: </strong>Using dendrimer as a carrier for TiF4 increased pH and enhanced TiF44 ability to limit dentin demineralization and microhardness loss.</p><p><strong>Clinical relevance: </strong>The application of the newly-developed TiF4-dendrimer gel might be an effective approach to prevent/ limit dentin demineralization and dentin caries.</p>","PeriodicalId":298,"journal":{"name":"Dental Materials","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dental Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.dental.2024.11.007","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0

Abstract

Objective: The anti-caries effects of titanium tetrafluoride (TiF4) are well-documented, but its low pH challenges clinical application. This study evaluated PEG-citrate dendrimer as a carrier to enhance TiF4 stability and efficacy.

Methods: PEG-citrate dendrimer and TiF4-dendrimer gel were synthesized, and their structures confirmed using Fourier Transform Infrared Spectroscopy (FTIR), Hydrogen Nuclear Magnetic Resonance (1H NMR), and Liquid Chromatography-Mass Spectrometry (LC-MS). Thirty-six intact human teeth were prepared, randomly divided into three groups (n = 12) and subjected to pH cycling with the following treatments: titanium tetrafluoride (T), dendrimer (D), and dendrimer with TiF4 (TD). Vickers microhardness and Raman spectroscopy evaluated dentin demineralization. EDS analysis measured titanium and fluoride penetration into dentin in T and TD groups and mineral content (calcium and phosphorus) in all groups.

Results: The T group showed the highest microhardness loss (p < 0.001), followed by D and TD groups. EDS analysis revealed no significant difference in titanium and fluoride content between the surface and subsurface in TD (p = 0.344), while T had more titanium on the surface (p < 0.001). TD had higher subsurface calcium content compared to T (p = 0.008). Raman spectroscopy revealed significant changes in phosphate-to-amide and carbonate-to-amide ratios before and after pH cycling in all groups (p < 0.001), with no statistical differences among the groups.

Conclusion: Using dendrimer as a carrier for TiF4 increased pH and enhanced TiF44 ability to limit dentin demineralization and microhardness loss.

Clinical relevance: The application of the newly-developed TiF4-dendrimer gel might be an effective approach to prevent/ limit dentin demineralization and dentin caries.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Dental Materials
Dental Materials 工程技术-材料科学:生物材料
CiteScore
9.80
自引率
10.00%
发文量
290
审稿时长
67 days
期刊介绍: Dental Materials publishes original research, review articles, and short communications. Academy of Dental Materials members click here to register for free access to Dental Materials online. The principal aim of Dental Materials is to promote rapid communication of scientific information between academia, industry, and the dental practitioner. Original Manuscripts on clinical and laboratory research of basic and applied character which focus on the properties or performance of dental materials or the reaction of host tissues to materials are given priority publication. Other acceptable topics include application technology in clinical dentistry and dental laboratory technology. Comprehensive reviews and editorial commentaries on pertinent subjects will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信