Microwave-Driven Reduction Accelerates Oxygen Exchange in Perovskite Oxides.

IF 8.3 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
ACS Applied Materials & Interfaces Pub Date : 2024-12-18 Epub Date: 2024-12-04 DOI:10.1021/acsami.4c15150
Aitor Domínguez-Saldaña, Alfonso J Carrillo, María Balaguer, Laura Navarrete, Joaquín Santos, David Catalán-Martínez, Beatriz García-Baños, Pedro J Plaza-González, José D Gutierrez-Cano, Felipe Peñaranda, José Manuel Catalá-Civera, José Manuel Serra
{"title":"Microwave-Driven Reduction Accelerates Oxygen Exchange in Perovskite Oxides.","authors":"Aitor Domínguez-Saldaña, Alfonso J Carrillo, María Balaguer, Laura Navarrete, Joaquín Santos, David Catalán-Martínez, Beatriz García-Baños, Pedro J Plaza-González, José D Gutierrez-Cano, Felipe Peñaranda, José Manuel Catalá-Civera, José Manuel Serra","doi":"10.1021/acsami.4c15150","DOIUrl":null,"url":null,"abstract":"<p><p>Microwave-assisted oxide reduction has emerged as a promising method to electrify chemical looping processes for renewable hydrogen production. Moreover, these thermochemical cycles can be used for thermochemical air separation, electrifying the O<sub>2</sub> generation by applying microwaves in the reduction step. This approach offers an alternative to conventional cryogenic air separation, producing pure streams of O<sub>2</sub> and N<sub>2</sub>. The electrification by microwaves lowers the requirements for titanate perovskites (CaTi<sub>1-<i>x</i></sub>Mn<sub><i>x</i></sub>O<sub>3-δ</sub>), which typically demand high temperatures for thermochemical cycles. Microwave activation allows for a drastic reduction in the operation conditions of the reduction reaction, leading to unprecedentedly rapid absorption-desorption cycles (<3 min per cycle). For CaTi<sub>0.8</sub>Mn<sub>0.2</sub>O<sub>3-δ</sub>, we achieved a cycle-averaged O<sub>2</sub> production of 2.6 mL g<sup>-1</sup> min<sup>-1</sup> at 800 °C, surpassing conventional values of materials operating in the high-temperature regime. This method could significantly impact thermochemical air separation by enabling a faster oxygen absorption-desorption cycle at more moderate temperatures than those of conventionally heated processes.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"69324-69332"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15150","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Microwave-assisted oxide reduction has emerged as a promising method to electrify chemical looping processes for renewable hydrogen production. Moreover, these thermochemical cycles can be used for thermochemical air separation, electrifying the O2 generation by applying microwaves in the reduction step. This approach offers an alternative to conventional cryogenic air separation, producing pure streams of O2 and N2. The electrification by microwaves lowers the requirements for titanate perovskites (CaTi1-xMnxO3-δ), which typically demand high temperatures for thermochemical cycles. Microwave activation allows for a drastic reduction in the operation conditions of the reduction reaction, leading to unprecedentedly rapid absorption-desorption cycles (<3 min per cycle). For CaTi0.8Mn0.2O3-δ, we achieved a cycle-averaged O2 production of 2.6 mL g-1 min-1 at 800 °C, surpassing conventional values of materials operating in the high-temperature regime. This method could significantly impact thermochemical air separation by enabling a faster oxygen absorption-desorption cycle at more moderate temperatures than those of conventionally heated processes.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信