Qiujiang Li, Xuanyu Xiao, Tianyou Yan, Dan Song, Lei Li, Zhiyu Chen, Yuting Zhong, Wei Deng, Xiaoyan Liu, Yueming Song, Lei Wang, Yunbing Wang
{"title":"Heterojunction Nanozyme Hydrogels Containing Cu-O-Zn Bonds with Strong Charge Transfer for Accelerated Diabetic Wound Healing.","authors":"Qiujiang Li, Xuanyu Xiao, Tianyou Yan, Dan Song, Lei Li, Zhiyu Chen, Yuting Zhong, Wei Deng, Xiaoyan Liu, Yueming Song, Lei Wang, Yunbing Wang","doi":"10.1021/acsami.4c15715","DOIUrl":null,"url":null,"abstract":"<p><p>The complex microenvironment of persistent inflammation and bacterial infection is a major challenge in chronic diabetic wounds. The development of nanozymes capable of efficiently scavenging reactive oxygen species (ROS) is a promising method to promote diabetic wound healing. However, many nanozymes show rather limited antioxidant activity and ROS-dependent antibacterial effects under certain circumstances, further weakening their ability to scavenge ROS. To meet these challenges, electronically regulated bioheterojunction (E-bio-HJ) nanozyme hydrogels derived from metal-organic frameworks (MOFs) were designed and prepared via an interface engineering strategy. Owing to the electron transfer and redistribution effects of the abundant and highly dispersed Cu-O-Zn sites at the heterogeneous interface, the E-bio-HJ nanozymes exhibited catalase (CAT)-like activity with ultrahigh hydrogen peroxide affinity (<i>K<sub>m</sub></i> = 25.76 mM) and sustained ROS consumption. In addition, owing to the enhanced interfacial effect of E-bio-HJ and the good biocompatibility and cell adhesion of the methacryloylated gelatin (Gel) hydrogel, the E-bio-HJ gelatin hydrogel (E-bio-HJ/Gel) further reduced inflammation by inducing macrophage transformation to the M2 phenotype, accompanied by excellent antimicrobial properties and enhanced cell migration, angiogenesis, and collagen deposition, which synergistically promoted diabetic wound healing. This highly effective and comprehensive strategy offers a new approach for the rapid healing of diabetic wounds.</p>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":" ","pages":"68950-68966"},"PeriodicalIF":8.3000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c15715","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The complex microenvironment of persistent inflammation and bacterial infection is a major challenge in chronic diabetic wounds. The development of nanozymes capable of efficiently scavenging reactive oxygen species (ROS) is a promising method to promote diabetic wound healing. However, many nanozymes show rather limited antioxidant activity and ROS-dependent antibacterial effects under certain circumstances, further weakening their ability to scavenge ROS. To meet these challenges, electronically regulated bioheterojunction (E-bio-HJ) nanozyme hydrogels derived from metal-organic frameworks (MOFs) were designed and prepared via an interface engineering strategy. Owing to the electron transfer and redistribution effects of the abundant and highly dispersed Cu-O-Zn sites at the heterogeneous interface, the E-bio-HJ nanozymes exhibited catalase (CAT)-like activity with ultrahigh hydrogen peroxide affinity (Km = 25.76 mM) and sustained ROS consumption. In addition, owing to the enhanced interfacial effect of E-bio-HJ and the good biocompatibility and cell adhesion of the methacryloylated gelatin (Gel) hydrogel, the E-bio-HJ gelatin hydrogel (E-bio-HJ/Gel) further reduced inflammation by inducing macrophage transformation to the M2 phenotype, accompanied by excellent antimicrobial properties and enhanced cell migration, angiogenesis, and collagen deposition, which synergistically promoted diabetic wound healing. This highly effective and comprehensive strategy offers a new approach for the rapid healing of diabetic wounds.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.