Patric Komforth, Jan Imschweiler, Milena Hesse, Alina G Heck, Alexander Fuchs, Adrian V Hauck, Lutz Nuhn
{"title":"Toward Intracellular Delivery: Aliphatic Polycarbonates with Pendant Thiol-Reactive Thiosulfonates for Reversible Postpolymerization Modification.","authors":"Patric Komforth, Jan Imschweiler, Milena Hesse, Alina G Heck, Alexander Fuchs, Adrian V Hauck, Lutz Nuhn","doi":"10.1021/acs.biomac.4c01207","DOIUrl":null,"url":null,"abstract":"<p><p>Postpolymerization modifications are valuable techniques for creating functional polymers that are challenging to synthesize directly. This study presents aliphatic polycarbonates with pendant thiol-reactive groups for disulfide formation with mercaptans. The reductive responsive nature of this reaction allows for reversible postpolymerization modifications on biodegradable scaffolds. Six-membered cyclic carbonate monomers with pendant thiosulfonate groups were synthesized and polymerized using controlled organocatalytic ring-opening polymerization, yielding polymers with narrow molecular weight dispersities (<i>Đ</i> = 1.2) and intact reactive thiosulfonate side chains. Reversible modification with benzyl mercaptans achieved high degrees of disulfide modification. Additionally, thiol-reactive carbonate monomers were block-copolymerized onto polyethylene glycol (mPEG<sub>113</sub>) and then converted into benzyl disulfides, while the block copolymers' hydroxyl end groups remained available for fluorescent dye labeling. The amphiphilic block copolymers self-assembled in water into micelles (∼33 nm diameter), capable of encapsulating hydrophobic molecules. These micelles successfully delivered hydrophobic dyes into macrophages, indicating the potential for intracellular drug delivery.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":"387-404"},"PeriodicalIF":5.5000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01207","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Postpolymerization modifications are valuable techniques for creating functional polymers that are challenging to synthesize directly. This study presents aliphatic polycarbonates with pendant thiol-reactive groups for disulfide formation with mercaptans. The reductive responsive nature of this reaction allows for reversible postpolymerization modifications on biodegradable scaffolds. Six-membered cyclic carbonate monomers with pendant thiosulfonate groups were synthesized and polymerized using controlled organocatalytic ring-opening polymerization, yielding polymers with narrow molecular weight dispersities (Đ = 1.2) and intact reactive thiosulfonate side chains. Reversible modification with benzyl mercaptans achieved high degrees of disulfide modification. Additionally, thiol-reactive carbonate monomers were block-copolymerized onto polyethylene glycol (mPEG113) and then converted into benzyl disulfides, while the block copolymers' hydroxyl end groups remained available for fluorescent dye labeling. The amphiphilic block copolymers self-assembled in water into micelles (∼33 nm diameter), capable of encapsulating hydrophobic molecules. These micelles successfully delivered hydrophobic dyes into macrophages, indicating the potential for intracellular drug delivery.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.