Characterization of a Dual Function Peptide Cyclase in Graspetide Biosynthesis.

IF 3.5 2区 生物学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
ACS Chemical Biology Pub Date : 2024-12-20 Epub Date: 2024-12-04 DOI:10.1021/acschembio.4c00626
Garret M Rubin, Krishna P Patel, Yujia Jiang, Alivia C Ishee, Gustavo Seabra, Steven D Bruner, Yousong Ding
{"title":"Characterization of a Dual Function Peptide Cyclase in Graspetide Biosynthesis.","authors":"Garret M Rubin, Krishna P Patel, Yujia Jiang, Alivia C Ishee, Gustavo Seabra, Steven D Bruner, Yousong Ding","doi":"10.1021/acschembio.4c00626","DOIUrl":null,"url":null,"abstract":"<p><p>Graspetides are a diverse family of ribosomally synthesized and post-translationally modified peptides with unique macrocyclic structures formed by ATP-grasp enzymes. Group 11 graspetides, including prunipeptin, feature both macrolactone and macrolactam cross-links. Despite the known involvement of a single ATP-grasp cyclase in the dual macrocyclizations of groups 5, 7, and 11 graspetides, detailed mechanistic insights into these enzymes remain limited. Here, we reconstructed prunipeptin biosynthesis from <i>Streptomyces coelicolor</i> using recombinant PruA and PruB macrocyclase. PruB exhibited kinetic behavior similar to other characterized graspetide cyclases, with a notably higher <i>k</i><sub>cat</sub>, likely due to utilization of an ATP-regeneration system. The X-ray crystal structure of PruB revealed distinct features as compared to groups 1 and 2 enzymes. Site-directed mutagenesis identified critical roles of key residues for the PruB reaction, including the DxR motif conserved in other graspetide cyclases. Additionally, computational modeling of the PruA/PruB cocomplex uncovered substrate interactions and suggested that PruB first catalyzes a macrolactone bond formation on PruA. This study enhances our understanding of ATP-grasp enzyme mechanisms in graspetide biosynthesis and provides insights for engineering these enzymes for future applications.</p>","PeriodicalId":11,"journal":{"name":"ACS Chemical Biology","volume":" ","pages":"2525-2534"},"PeriodicalIF":3.5000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acschembio.4c00626","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/4 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Graspetides are a diverse family of ribosomally synthesized and post-translationally modified peptides with unique macrocyclic structures formed by ATP-grasp enzymes. Group 11 graspetides, including prunipeptin, feature both macrolactone and macrolactam cross-links. Despite the known involvement of a single ATP-grasp cyclase in the dual macrocyclizations of groups 5, 7, and 11 graspetides, detailed mechanistic insights into these enzymes remain limited. Here, we reconstructed prunipeptin biosynthesis from Streptomyces coelicolor using recombinant PruA and PruB macrocyclase. PruB exhibited kinetic behavior similar to other characterized graspetide cyclases, with a notably higher kcat, likely due to utilization of an ATP-regeneration system. The X-ray crystal structure of PruB revealed distinct features as compared to groups 1 and 2 enzymes. Site-directed mutagenesis identified critical roles of key residues for the PruB reaction, including the DxR motif conserved in other graspetide cyclases. Additionally, computational modeling of the PruA/PruB cocomplex uncovered substrate interactions and suggested that PruB first catalyzes a macrolactone bond formation on PruA. This study enhances our understanding of ATP-grasp enzyme mechanisms in graspetide biosynthesis and provides insights for engineering these enzymes for future applications.

草肽生物合成中双功能肽环化酶的研究。
Graspetides是一个多样化的家族,由核糖体合成和翻译后修饰的肽,具有独特的大环结构,由atp抓取酶形成。第11类草肽类,包括普尼肽,具有内酯和内酯交联。尽管已知单个atp抓住环化酶参与了第5、7和11基团的双大环化,但对这些酶的详细机制了解仍然有限。在这里,我们利用重组PruA和PruB大环化酶重建了从冷色链霉菌中合成prunipeptin的过程。PruB表现出与其他特征草肽环化酶相似的动力学行为,具有明显更高的kcat,可能是由于利用了atp再生系统。与1和2组酶相比,PruB的x射线晶体结构显示出明显的特征。位点定向突变确定了PruB反应的关键残基的关键作用,包括在其他草肽环化酶中保守的DxR基序。此外,PruA/PruB共络合物的计算模型揭示了底物相互作用,并表明PruB首先催化PruA上的大内酯键形成。本研究增强了我们对atp -抓取酶在草肽生物合成中的作用机制的理解,并为这些酶的未来应用提供了新的思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Chemical Biology
ACS Chemical Biology 生物-生化与分子生物学
CiteScore
7.50
自引率
5.00%
发文量
353
审稿时长
3.3 months
期刊介绍: ACS Chemical Biology provides an international forum for the rapid communication of research that broadly embraces the interface between chemistry and biology. The journal also serves as a forum to facilitate the communication between biologists and chemists that will translate into new research opportunities and discoveries. Results will be published in which molecular reasoning has been used to probe questions through in vitro investigations, cell biological methods, or organismic studies. We welcome mechanistic studies on proteins, nucleic acids, sugars, lipids, and nonbiological polymers. The journal serves a large scientific community, exploring cellular function from both chemical and biological perspectives. It is understood that submitted work is based upon original results and has not been published previously.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信