BioDolphin as a comprehensive database of lipid–protein binding interactions

IF 5.9 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Li-Yen Yang, Kaike Ping, Yunan Luo, Andrew C. McShan
{"title":"BioDolphin as a comprehensive database of lipid–protein binding interactions","authors":"Li-Yen Yang, Kaike Ping, Yunan Luo, Andrew C. McShan","doi":"10.1038/s42004-024-01384-z","DOIUrl":null,"url":null,"abstract":"Lipid-protein interactions are crucial for virtually all biological processes in living cells. However, existing structural databases focusing on these interactions are limited to integral membrane proteins. A systematic understanding of diverse lipid-protein interactions also encompassing lipid-anchored, peripheral membrane and soluble lipid binding proteins remains to be elucidated. To address this gap and facilitate the research of universal lipid-protein assemblies, we developed BioDolphin - a curated database with over 127,000 lipid-protein interactions. BioDolphin provides comprehensive annotations, including protein functions, protein families, lipid classifications, lipid-protein binding affinities, membrane association type, and atomic structures. Accessible via a publicly available web server ( www.biodolphin.chemistry.gatech.edu ), users can efficiently search for lipid-protein interactions using a wide range of options and download datasets of interest. Additionally, BioDolphin features interactive 3D visualization of each lipid-protein complex, facilitating the exploration of structure-function relationships. BioDolphin also includes detailed information on atomic-level intermolecular interactions between lipids and proteins that enable large scale analysis of both paired complexes and larger assemblies. As an open-source resource, BioDolphin enables global analysis of lipid-protein interactions and supports data-driven approaches for developing predictive machine learning algorithms for lipid-protein binding affinity and structures. Lipid–protein interactions are crucial for virtually all biological processes in living cells, however, systematic structural databases covering broad types of lipid–protein interaction are lacking. Here, the authors develop BioDolphin, a curated database with over 127,000 lipid–protein interactions, providing comprehensive annotations detailing lipid–protein complexes.","PeriodicalId":10529,"journal":{"name":"Communications Chemistry","volume":" ","pages":"1-11"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42004-024-01384-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s42004-024-01384-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid-protein interactions are crucial for virtually all biological processes in living cells. However, existing structural databases focusing on these interactions are limited to integral membrane proteins. A systematic understanding of diverse lipid-protein interactions also encompassing lipid-anchored, peripheral membrane and soluble lipid binding proteins remains to be elucidated. To address this gap and facilitate the research of universal lipid-protein assemblies, we developed BioDolphin - a curated database with over 127,000 lipid-protein interactions. BioDolphin provides comprehensive annotations, including protein functions, protein families, lipid classifications, lipid-protein binding affinities, membrane association type, and atomic structures. Accessible via a publicly available web server ( www.biodolphin.chemistry.gatech.edu ), users can efficiently search for lipid-protein interactions using a wide range of options and download datasets of interest. Additionally, BioDolphin features interactive 3D visualization of each lipid-protein complex, facilitating the exploration of structure-function relationships. BioDolphin also includes detailed information on atomic-level intermolecular interactions between lipids and proteins that enable large scale analysis of both paired complexes and larger assemblies. As an open-source resource, BioDolphin enables global analysis of lipid-protein interactions and supports data-driven approaches for developing predictive machine learning algorithms for lipid-protein binding affinity and structures. Lipid–protein interactions are crucial for virtually all biological processes in living cells, however, systematic structural databases covering broad types of lipid–protein interaction are lacking. Here, the authors develop BioDolphin, a curated database with over 127,000 lipid–protein interactions, providing comprehensive annotations detailing lipid–protein complexes.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Chemistry
Communications Chemistry Chemistry-General Chemistry
CiteScore
7.70
自引率
1.70%
发文量
146
审稿时长
13 weeks
期刊介绍: Communications Chemistry is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the chemical sciences. Research papers published by the journal represent significant advances bringing new chemical insight to a specialized area of research. We also aim to provide a community forum for issues of importance to all chemists, regardless of sub-discipline.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信