{"title":"Natural world heritage sites are at risk from climate change globally","authors":"Guolong Chen, Bo Fu, Yongye Jiang, Xinhao Suo, Yuqin Lai, Zhiwei Chen, Jingyi Li, Longsheng Li, Mengmeng Lu, Yunwei Tang, Huadong Guo, Ruixia Yang, Bengang Li","doi":"10.1038/s43247-024-01933-3","DOIUrl":null,"url":null,"abstract":"Natural world heritage sites face increasing risk under rapid climate change, especially considering the impacts of climate extremes. However, there is not yet enough understanding of the future extreme climate challenges at global natural world heritage sites. Here we identify the exposure of 250 natural heritage sites to extreme climate events under 4 different future scenarios. We found that by 2100 under the highest emission scenario, 248 out of 250 sites were exposed to extreme climate events. Forest natural world heritage sites may face increasing pressure to complex extreme phenomena under emission rise. In tropical regions, where high temperatures may magnify the vulnerability of biodiversity, we identify 14 natural world heritage sites to be prioritised that are poor in biodiversity and expected to face high temperatures. Hence, there is an urgent need for enhanced climate change adaptation at heritage sites to minimise loss of irreplaceable values. Under high emission scenarios, 248 global natural heritage sites are projected to be exposed to extreme climate events by 2100, and the forest sites are mainly at risk, according to an analysis that combines world heritage site data and climate scenarios.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-8"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01933-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01933-3","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Natural world heritage sites face increasing risk under rapid climate change, especially considering the impacts of climate extremes. However, there is not yet enough understanding of the future extreme climate challenges at global natural world heritage sites. Here we identify the exposure of 250 natural heritage sites to extreme climate events under 4 different future scenarios. We found that by 2100 under the highest emission scenario, 248 out of 250 sites were exposed to extreme climate events. Forest natural world heritage sites may face increasing pressure to complex extreme phenomena under emission rise. In tropical regions, where high temperatures may magnify the vulnerability of biodiversity, we identify 14 natural world heritage sites to be prioritised that are poor in biodiversity and expected to face high temperatures. Hence, there is an urgent need for enhanced climate change adaptation at heritage sites to minimise loss of irreplaceable values. Under high emission scenarios, 248 global natural heritage sites are projected to be exposed to extreme climate events by 2100, and the forest sites are mainly at risk, according to an analysis that combines world heritage site data and climate scenarios.
期刊介绍:
Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science.
Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.