Yongkai Lu, Jiaxin Xu, Siyan Liu, Baochun Tian, Feng Long
{"title":"A facile optical fiber-embedded microfluidic biochip for rapid and sensitive detection of microRNA-let-7a in serum","authors":"Yongkai Lu, Jiaxin Xu, Siyan Liu, Baochun Tian, Feng Long","doi":"10.1007/s00604-024-06865-5","DOIUrl":null,"url":null,"abstract":"<div><p> A novel hybridization chain reaction (HCR) powered optical fiber-embedded microfluidic biochip (HCR-FMB) has been constructed for ultrafast and sensitive detection of lethal-7a (let-7a) in serum. By integrating HCR, fluorescence energy resonant transfer, and evanescent wave fluorescence principle, the HCR-FMB enables detecting let-7a with satisfactory limit of detection of 100.0 pM within 6 min at room temperature, and demonstrates excellent specificity. The HCR-FMB can directly detect let-7a in serum with high sensitivity and without any pre-treatment, and good recoveries were observed for let-7a in serum samples, demonstrating their potential application to the analysis of serum samples. The HCR-FMB exhibits several advantages, including rapidity, enzyme-free, miniaturization, ease-of-operation, field-deployment applicability, minimal-equipment, and cost-effectiveness. The HCR-FMB can be considered a revolutionary detection device that rapidly adapts and deploys in various settings, especially in low medical resource regions.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00604-024-06865-5","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
A novel hybridization chain reaction (HCR) powered optical fiber-embedded microfluidic biochip (HCR-FMB) has been constructed for ultrafast and sensitive detection of lethal-7a (let-7a) in serum. By integrating HCR, fluorescence energy resonant transfer, and evanescent wave fluorescence principle, the HCR-FMB enables detecting let-7a with satisfactory limit of detection of 100.0 pM within 6 min at room temperature, and demonstrates excellent specificity. The HCR-FMB can directly detect let-7a in serum with high sensitivity and without any pre-treatment, and good recoveries were observed for let-7a in serum samples, demonstrating their potential application to the analysis of serum samples. The HCR-FMB exhibits several advantages, including rapidity, enzyme-free, miniaturization, ease-of-operation, field-deployment applicability, minimal-equipment, and cost-effectiveness. The HCR-FMB can be considered a revolutionary detection device that rapidly adapts and deploys in various settings, especially in low medical resource regions.
期刊介绍:
As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.