{"title":"Transition from Internal to External Oxidation in Binary Fe–Cr Alloys Around 900 °C","authors":"A. Chyrkin, J. Froitzheim, W. J. Quadakkers","doi":"10.1007/s11085-024-10322-2","DOIUrl":null,"url":null,"abstract":"<div><p>The transition from external to internal oxidation of a binary Fe-10Cr alloy has been investigated in Fe/FeO Rhines pack (RP) and H<sub>2</sub>/H<sub>2</sub>O between 850 and 900 °C. Internal oxidation is facilitated by increasing temperature and presence of water vapor. A classical Wagnerian diffusion analysis predicts external oxidation for ferritic (BCC) Fe-10Cr and internal oxidation for austenitic (FCC) Fe-10Cr. The α-to-γ transformation is demonstrated to be the primary factor promoting internal oxidation in Fe–Cr around 900 °C. Water vapor is believed to promote internal oxidation due to a higher reactivity of H<sub>2</sub>O compared to O<sub>2</sub> and higher preferential adsorption of the H<sub>2</sub>O molecule.</p></div>","PeriodicalId":724,"journal":{"name":"Oxidation of Metals","volume":"102 1","pages":"1 - 22"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11085-024-10322-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oxidation of Metals","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11085-024-10322-2","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
The transition from external to internal oxidation of a binary Fe-10Cr alloy has been investigated in Fe/FeO Rhines pack (RP) and H2/H2O between 850 and 900 °C. Internal oxidation is facilitated by increasing temperature and presence of water vapor. A classical Wagnerian diffusion analysis predicts external oxidation for ferritic (BCC) Fe-10Cr and internal oxidation for austenitic (FCC) Fe-10Cr. The α-to-γ transformation is demonstrated to be the primary factor promoting internal oxidation in Fe–Cr around 900 °C. Water vapor is believed to promote internal oxidation due to a higher reactivity of H2O compared to O2 and higher preferential adsorption of the H2O molecule.
期刊介绍:
Oxidation of Metals is the premier source for the rapid dissemination of current research on all aspects of the science of gas-solid reactions at temperatures greater than about 400˚C, with primary focus on the high-temperature corrosion of bulk and coated systems. This authoritative bi-monthly publishes original scientific papers on kinetics, mechanisms, studies of scales from structural and morphological viewpoints, transport properties in scales, phase-boundary reactions, and much more. Articles may discuss both theoretical and experimental work related to gas-solid reactions at the surface or near-surface of a material exposed to elevated temperatures, including reactions with oxygen, nitrogen, sulfur, carbon and halogens. In addition, Oxidation of Metals publishes the results of frontier research concerned with deposit-induced attack. Review papers and short technical notes are encouraged.