S Kshama Shetty, K Swamynathan, Jyoti Roy Choudhuri, K Shwetha, Sadhana H Upadhya, Sandeep Kumar
{"title":"Mesomorphic cyanobiphenyl appended thiols as anti-corrosive materials: Electrochemical and theoretical investigations","authors":"S Kshama Shetty, K Swamynathan, Jyoti Roy Choudhuri, K Shwetha, Sadhana H Upadhya, Sandeep Kumar","doi":"10.1007/s12039-024-02329-8","DOIUrl":null,"url":null,"abstract":"<div><p>Cyanobiphenyls are well-known for their liquid crystalline organization. The molecules that can undergo self-assembly on the surface of metal, offer potent corrosion inhibition properties. Herein we report five such cyanobiphenyl derivatives as potential anti-corrosion films on the surface of mild steel immersed in 1M HCl medium. The electrochemical impedance measurements and potentiodynamic polarization measurements reveal that the cyanobiphenyl derivative with shortest chain length out of the five inhibitors under consideration (i.e., 4′-((6-mercaptohexyl)oxy)-[1,1′-biphenyl]-4-carbonitrile) exhibited up to 98% efficiency for the drop cast volume of 25 <i>µ</i>L of 1 mg/mL of stock solution as compared to increased chain length molecules. The surface characterization of the corroded and protected mild steel surface was done by using a scanning electron microscope and energy-dispersive X-ray spectroscopic methods which affirms the presence of protective film on the surface of mild steel after exposure to acid medium. The theoretical calculations support experimental observations with respect to trends in the efficiency of short-chain and long-chain functionalized cyanobiphenyls.</p><h3>Graphical Abstract</h3><p> Five different chain-length cyanobiphenyls appended thiols as anti-corrosive materials on the surface of mild steel in an acidic medium were investigated by electrochemical, theoretical and surface characterization methods. The efficacy of the molecule was as high as 98–99% at a very small drop cast volume of 25 <i>µ</i>L.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":616,"journal":{"name":"Journal of Chemical Sciences","volume":"136 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Sciences","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s12039-024-02329-8","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyanobiphenyls are well-known for their liquid crystalline organization. The molecules that can undergo self-assembly on the surface of metal, offer potent corrosion inhibition properties. Herein we report five such cyanobiphenyl derivatives as potential anti-corrosion films on the surface of mild steel immersed in 1M HCl medium. The electrochemical impedance measurements and potentiodynamic polarization measurements reveal that the cyanobiphenyl derivative with shortest chain length out of the five inhibitors under consideration (i.e., 4′-((6-mercaptohexyl)oxy)-[1,1′-biphenyl]-4-carbonitrile) exhibited up to 98% efficiency for the drop cast volume of 25 µL of 1 mg/mL of stock solution as compared to increased chain length molecules. The surface characterization of the corroded and protected mild steel surface was done by using a scanning electron microscope and energy-dispersive X-ray spectroscopic methods which affirms the presence of protective film on the surface of mild steel after exposure to acid medium. The theoretical calculations support experimental observations with respect to trends in the efficiency of short-chain and long-chain functionalized cyanobiphenyls.
Graphical Abstract
Five different chain-length cyanobiphenyls appended thiols as anti-corrosive materials on the surface of mild steel in an acidic medium were investigated by electrochemical, theoretical and surface characterization methods. The efficacy of the molecule was as high as 98–99% at a very small drop cast volume of 25 µL.
期刊介绍:
Journal of Chemical Sciences is a monthly journal published by the Indian Academy of Sciences. It formed part of the original Proceedings of the Indian Academy of Sciences – Part A, started by the Nobel Laureate Prof C V Raman in 1934, that was split in 1978 into three separate journals. It was renamed as Journal of Chemical Sciences in 2004. The journal publishes original research articles and rapid communications, covering all areas of chemical sciences. A significant feature of the journal is its special issues, brought out from time to time, devoted to conference symposia/proceedings in frontier areas of the subject, held not only in India but also in other countries.