Reaction Mechanism of MgAl2O4 Refractories in Contact with a Liquid Ferromanganese Metal

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jaewoo Myung, Jiwon Park, Kyung-Ho Kim, Hiroyuki Shibata, Yunki Byeun, Yongsug Chung
{"title":"Reaction Mechanism of MgAl2O4 Refractories in Contact with a Liquid Ferromanganese Metal","authors":"Jaewoo Myung,&nbsp;Jiwon Park,&nbsp;Kyung-Ho Kim,&nbsp;Hiroyuki Shibata,&nbsp;Yunki Byeun,&nbsp;Yongsug Chung","doi":"10.1007/s12540-024-01820-8","DOIUrl":null,"url":null,"abstract":"<div><p>A reaction mechanism is suggested for two types of MgAl<sub>2</sub>O<sub>4</sub> refractories; a MgAl<sub>2</sub>O<sub>4</sub> and a MgO-rich MgAl<sub>2</sub>O<sub>4</sub>, which were reacted with a liquid ferromanganese metal. The finger rotating test (FRT) technique was adopted and experiments were carried out at 1873 K. After the experiments, each refractory was analyzed by X-ray computed tomography, field emission scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. When the MgAl<sub>2</sub>O<sub>4</sub> was in contact with the liquid ferromanganese metal, complex (Mg,Mn)(Mn,Al)<sub>2</sub>O<sub>4</sub> layers were formed at the surface of the refractory. It acted as a passive layer since manganese ions did not penetrate into the bulk of the refractory with increasing reaction time. However, when the MgO-rich MgAl<sub>2</sub>O<sub>4</sub> was in contact with liquid ferromanganese metal, manganese ions selectively penetrated through the MgO grains, which led to the formation of a (Mg<sub>x</sub>Mn<sub>1-x</sub>)O solid solution. The penetration depth increased both with increasing reaction time and rotating speed. The characteristics of the reaction layers were analyzed by XRD and EDX and, a possible mechanism to form these layers was suggested based on thermodynamic consideration.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><img></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"30 12","pages":"3513 - 3522"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01820-8","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A reaction mechanism is suggested for two types of MgAl2O4 refractories; a MgAl2O4 and a MgO-rich MgAl2O4, which were reacted with a liquid ferromanganese metal. The finger rotating test (FRT) technique was adopted and experiments were carried out at 1873 K. After the experiments, each refractory was analyzed by X-ray computed tomography, field emission scanning electron microscopy, energy dispersive spectroscopy, and X-ray diffraction. When the MgAl2O4 was in contact with the liquid ferromanganese metal, complex (Mg,Mn)(Mn,Al)2O4 layers were formed at the surface of the refractory. It acted as a passive layer since manganese ions did not penetrate into the bulk of the refractory with increasing reaction time. However, when the MgO-rich MgAl2O4 was in contact with liquid ferromanganese metal, manganese ions selectively penetrated through the MgO grains, which led to the formation of a (MgxMn1-x)O solid solution. The penetration depth increased both with increasing reaction time and rotating speed. The characteristics of the reaction layers were analyzed by XRD and EDX and, a possible mechanism to form these layers was suggested based on thermodynamic consideration.

Graphical Abstract

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信