Fiber-Reinforced Thermoplastic Composites for Future Use in Aircraft Radomes: Biomimetic Design Approaches and Its Performances

IF 2.2 4区 工程技术 Q1 MATERIALS SCIENCE, TEXTILES
Anahar Nurul Aina, Muhammad Asyraf Muhammad Rizal, Muhamad Fauzi Abd Rased, Shukur Abu Hassan, Lin Feng Ng, Lakshminarasimhan Rajeshkumar, Rushdan Ahmad Ilyas, Haris Ahmad Israr
{"title":"Fiber-Reinforced Thermoplastic Composites for Future Use in Aircraft Radomes: Biomimetic Design Approaches and Its Performances","authors":"Anahar Nurul Aina,&nbsp;Muhammad Asyraf Muhammad Rizal,&nbsp;Muhamad Fauzi Abd Rased,&nbsp;Shukur Abu Hassan,&nbsp;Lin Feng Ng,&nbsp;Lakshminarasimhan Rajeshkumar,&nbsp;Rushdan Ahmad Ilyas,&nbsp;Haris Ahmad Israr","doi":"10.1007/s12221-024-00776-1","DOIUrl":null,"url":null,"abstract":"<div><p>The performance of polymer composites not only addresses challenges in aircraft components but also contributes to industries, such as automotive, architecture, marine, military, sports, and construction. Current manufacturing techniques and the expertise of engineers are crucial in identifying the most suitable biomimetic materials for specific applications. Based on the current literatures, the study on integrating biomimicry into fiber-reinforced thermoplastic composites to develop aircraft radome is still lacking. Thus, this article reviews various types of composites used in aircraft manufacturing, emphasizing the potential of nature-inspired designs to enhance structural performance, with a particular focus on radomes, which protect radar equipment. Bio-inspired designs, shaped by millions of years of evolution, have proven to be highly effective in creating optimized, complex forms that complement the versatility of polymer composites. Given that many current aircraft components are made from metals with little or no shape optimization, applying biomimicry to aircraft radome design offers significant potential for creating lightweight, high-strength structures. The biomimetic approach using fiber-reinforced thermoplastic composites has emerged as a promising strategy for developing improved structural components, offering enhanced mechanical properties, reduced weight, and greater sustainability, paving the way for more efficient and environmentally friendly radome materials. A general overview of biomimicry in relation to aircraft radomes is provided, highlighting how composite materials have already contributed to successful innovations. The economic and environmental benefits of fiber-reinforced thermoplastic composites and biomimetic approaches are also discussed, with insights into materials that offer superior impact and chemical resistance at a lower cost.</p></div>","PeriodicalId":557,"journal":{"name":"Fibers and Polymers","volume":"25 12","pages":"4503 - 4527"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers and Polymers","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12221-024-00776-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of polymer composites not only addresses challenges in aircraft components but also contributes to industries, such as automotive, architecture, marine, military, sports, and construction. Current manufacturing techniques and the expertise of engineers are crucial in identifying the most suitable biomimetic materials for specific applications. Based on the current literatures, the study on integrating biomimicry into fiber-reinforced thermoplastic composites to develop aircraft radome is still lacking. Thus, this article reviews various types of composites used in aircraft manufacturing, emphasizing the potential of nature-inspired designs to enhance structural performance, with a particular focus on radomes, which protect radar equipment. Bio-inspired designs, shaped by millions of years of evolution, have proven to be highly effective in creating optimized, complex forms that complement the versatility of polymer composites. Given that many current aircraft components are made from metals with little or no shape optimization, applying biomimicry to aircraft radome design offers significant potential for creating lightweight, high-strength structures. The biomimetic approach using fiber-reinforced thermoplastic composites has emerged as a promising strategy for developing improved structural components, offering enhanced mechanical properties, reduced weight, and greater sustainability, paving the way for more efficient and environmentally friendly radome materials. A general overview of biomimicry in relation to aircraft radomes is provided, highlighting how composite materials have already contributed to successful innovations. The economic and environmental benefits of fiber-reinforced thermoplastic composites and biomimetic approaches are also discussed, with insights into materials that offer superior impact and chemical resistance at a lower cost.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fibers and Polymers
Fibers and Polymers 工程技术-材料科学:纺织
CiteScore
3.90
自引率
8.00%
发文量
267
审稿时长
3.9 months
期刊介绍: -Chemistry of Fiber Materials, Polymer Reactions and Synthesis- Physical Properties of Fibers, Polymer Blends and Composites- Fiber Spinning and Textile Processing, Polymer Physics, Morphology- Colorants and Dyeing, Polymer Analysis and Characterization- Chemical Aftertreatment of Textiles, Polymer Processing and Rheology- Textile and Apparel Science, Functional Polymers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信