Jaiza Samara Macena de Araújo, Gabriela Gama Xavier Augusto, Aylla Mesquita Pestana, Francisco Carlos Groppo, Flávia Sammartino Mariano Rodrigues, Pedro Duarte Novaes, Michelle Franz-Montan
{"title":"Impact of Storage on In Vitro Permeation and Mucoadhesion Setup Experiments Using Swine Nasal Mucosa","authors":"Jaiza Samara Macena de Araújo, Gabriela Gama Xavier Augusto, Aylla Mesquita Pestana, Francisco Carlos Groppo, Flávia Sammartino Mariano Rodrigues, Pedro Duarte Novaes, Michelle Franz-Montan","doi":"10.1208/s12249-024-03002-6","DOIUrl":null,"url":null,"abstract":"<div><p>Intranasal topical administration offers a promising route for local and systemic drug delivery, with <i>in vitro</i> permeation and mucoadhesion studies often using porcine models. However, the impact of storage on mucosal integrity after the procedure remains unaddressed. This study aimed to standardize the preparation process and evaluated whether storage of porcine nasal mucosa impairs its integrity and permeability for experimental comparisons. Additionally, an optimized <i>in vitro</i> mucoadhesion experiment using texture analyzer equipment was investigated. Porcine nasal mucosa was subjected to different storage conditions (\"fresh\"; refrigerated at 4°C for 24 h and 48 h, and frozen at -20°C for two or three weeks) and assessed using optical and transmission electron microscopy. <i>In vitro</i> permeation assays were performed in a Franz-type vertical diffusion system with lidocaine hydrochloride (LDC). <i>In vitro</i> mucoadhesion assays were conducted using fresh nasal mucosa and a commercial nasal topical formulation using TA.XT. Plus texture analyzer. The variables involved (probe speed, contact time, and application force) in assessing mucoadhesive capacity (maximum mucoadhesive force F<sub>max</sub> and work of mucoadhesion W<sub>muc</sub>) were optimized using a Central Composite Design. Fresh tissues showed no alterations in histological arrangement or in the ultrastructure of adherence junctions. Stored tissues exhibited histological disorganization, reduced thickness, and loss of epithelial integrity. LDC permeability increased in storage tissues (<i>p</i> < 0.05). Contact force had a positive effect on F<sub>max</sub> and W<sub>muc</sub> (<i>p</i> < 0.0001), with a minimum required value of 0.48 N. Variations in contact time and probe speed did not affect the responses (<i>p</i> > 0.05). In conclusion, the preparation technique was adequate to maintain mucosa integrity for permeability studies. However, storing the mucosa at 4 or -20°C overestimated LDC permeation, which could mislead critical data for formulation development. Therefore, the use of fresh mucosa is recommended to ensure more reliable results. For <i>in vitro</i> mucoadhesion assays, a minimum contact force of 0.48N is required for optimal responses.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":6925,"journal":{"name":"AAPS PharmSciTech","volume":"26 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPS PharmSciTech","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1208/s12249-024-03002-6","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Intranasal topical administration offers a promising route for local and systemic drug delivery, with in vitro permeation and mucoadhesion studies often using porcine models. However, the impact of storage on mucosal integrity after the procedure remains unaddressed. This study aimed to standardize the preparation process and evaluated whether storage of porcine nasal mucosa impairs its integrity and permeability for experimental comparisons. Additionally, an optimized in vitro mucoadhesion experiment using texture analyzer equipment was investigated. Porcine nasal mucosa was subjected to different storage conditions ("fresh"; refrigerated at 4°C for 24 h and 48 h, and frozen at -20°C for two or three weeks) and assessed using optical and transmission electron microscopy. In vitro permeation assays were performed in a Franz-type vertical diffusion system with lidocaine hydrochloride (LDC). In vitro mucoadhesion assays were conducted using fresh nasal mucosa and a commercial nasal topical formulation using TA.XT. Plus texture analyzer. The variables involved (probe speed, contact time, and application force) in assessing mucoadhesive capacity (maximum mucoadhesive force Fmax and work of mucoadhesion Wmuc) were optimized using a Central Composite Design. Fresh tissues showed no alterations in histological arrangement or in the ultrastructure of adherence junctions. Stored tissues exhibited histological disorganization, reduced thickness, and loss of epithelial integrity. LDC permeability increased in storage tissues (p < 0.05). Contact force had a positive effect on Fmax and Wmuc (p < 0.0001), with a minimum required value of 0.48 N. Variations in contact time and probe speed did not affect the responses (p > 0.05). In conclusion, the preparation technique was adequate to maintain mucosa integrity for permeability studies. However, storing the mucosa at 4 or -20°C overestimated LDC permeation, which could mislead critical data for formulation development. Therefore, the use of fresh mucosa is recommended to ensure more reliable results. For in vitro mucoadhesion assays, a minimum contact force of 0.48N is required for optimal responses.
期刊介绍:
AAPS PharmSciTech is a peer-reviewed, online-only journal committed to serving those pharmaceutical scientists and engineers interested in the research, development, and evaluation of pharmaceutical dosage forms and delivery systems, including drugs derived from biotechnology and the manufacturing science pertaining to the commercialization of such dosage forms. Because of its electronic nature, AAPS PharmSciTech aspires to utilize evolving electronic technology to enable faster and diverse mechanisms of information delivery to its readership. Submission of uninvited expert reviews and research articles are welcomed.