{"title":"A thermodynamic critical state model for sands","authors":"Hongjun Li, Zhichao Zhang","doi":"10.1007/s10035-024-01492-6","DOIUrl":null,"url":null,"abstract":"<div><p>A thermodynamics-based constitutive model predicting the critical state behavior of sands is developed in this paper. The model includes hyperelastic and plastic constitutive relations derived from thermodynamics. Using the concept of elastic potential, hyperelastic relations are derived to describe the stress- and -density dependency of the elastic stiffness of sands, which naturally lead to the elastic limit with stress-induced anisotropy in effective stress space. The plastic constitutive relations coupled with the nonlinear hyperelasticity are then derived based on the energy dissipations and the second law of thermodynamics. The model is capable of predicting the critical state behavior of sands without concepts of yield surface and plastic potential surface. The model is validated by predicting the undrained shear behavior of Toyoura sand. The modeling results show that different patterns of undrained shear response, such as the pure dilation type, the contraction-dilation type with hardening, the contraction-dilation type with softening, and the pure contraction type, can be well captured by the model, depending on the confining pressure and the void ratio. The distinctions of contraction/dilation and critical state behavior between triaxial compression and extension are also predicted. It is shown that the critical state behavior of sand is the combined results of the pressure/density/path-dependent hyperelasticity and plasticity coupled with each other.</p></div>","PeriodicalId":49323,"journal":{"name":"Granular Matter","volume":"27 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Granular Matter","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10035-024-01492-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A thermodynamics-based constitutive model predicting the critical state behavior of sands is developed in this paper. The model includes hyperelastic and plastic constitutive relations derived from thermodynamics. Using the concept of elastic potential, hyperelastic relations are derived to describe the stress- and -density dependency of the elastic stiffness of sands, which naturally lead to the elastic limit with stress-induced anisotropy in effective stress space. The plastic constitutive relations coupled with the nonlinear hyperelasticity are then derived based on the energy dissipations and the second law of thermodynamics. The model is capable of predicting the critical state behavior of sands without concepts of yield surface and plastic potential surface. The model is validated by predicting the undrained shear behavior of Toyoura sand. The modeling results show that different patterns of undrained shear response, such as the pure dilation type, the contraction-dilation type with hardening, the contraction-dilation type with softening, and the pure contraction type, can be well captured by the model, depending on the confining pressure and the void ratio. The distinctions of contraction/dilation and critical state behavior between triaxial compression and extension are also predicted. It is shown that the critical state behavior of sand is the combined results of the pressure/density/path-dependent hyperelasticity and plasticity coupled with each other.
期刊介绍:
Although many phenomena observed in granular materials are still not yet fully understood, important contributions have been made to further our understanding using modern tools from statistical mechanics, micro-mechanics, and computational science.
These modern tools apply to disordered systems, phase transitions, instabilities or intermittent behavior and the performance of discrete particle simulations.
>> Until now, however, many of these results were only to be found scattered throughout the literature. Physicists are often unaware of the theories and results published by engineers or other fields - and vice versa.
The journal Granular Matter thus serves as an interdisciplinary platform of communication among researchers of various disciplines who are involved in the basic research on granular media. It helps to establish a common language and gather articles under one single roof that up to now have been spread over many journals in a variety of fields. Notwithstanding, highly applied or technical work is beyond the scope of this journal.