Statistical and Machine Learning-Based Imaging with Long Pulse Thermography for the Detection of Non-standardised Defects in CFRP Composites

IF 2.6 3区 材料科学 Q2 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
Afonso Espirito Santo, Weeliam Khor, Francesco Ciampa
{"title":"Statistical and Machine Learning-Based Imaging with Long Pulse Thermography for the Detection of Non-standardised Defects in CFRP Composites","authors":"Afonso Espirito Santo,&nbsp;Weeliam Khor,&nbsp;Francesco Ciampa","doi":"10.1007/s10921-024-01138-w","DOIUrl":null,"url":null,"abstract":"<div><p>In the last few years, infrared long pulse thermography (LPT) has attained high reliability and accuracy in the non-destructive inspection of low-thermally conductive materials such as carbon fibre reinforced polymer (CFRP) composites. However, to date, research investigations of LPT have been conducted on standardised and controlled material flaws such as flat bottom holes. Non-standardised defects in CFRPs are more common in real-life operations and, because of different nature, dimensions and complex shapes, their detection poses a significant challenge. This paper provides an in-depth analysis of LPT combined to advanced statistical and machine learning-based image processing tools for detection of non-standardised damage in CFRP composites. Statistical methods such as skewness and kurtosis, and machine learning algorithms such as principal component analysis and Fuzzy-c clustering were used to post-process thermal LPT signals. Damage scenarios that are likely to occur during manufacturing and in-service operations were analysed in terms of defect mapping characteristics using the signal-to-noise ratio and the Tanimoto criterion. Experimental results revealed that Fuzzy-c and LPT produced superior damage inspection performance.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01138-w","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

Abstract

In the last few years, infrared long pulse thermography (LPT) has attained high reliability and accuracy in the non-destructive inspection of low-thermally conductive materials such as carbon fibre reinforced polymer (CFRP) composites. However, to date, research investigations of LPT have been conducted on standardised and controlled material flaws such as flat bottom holes. Non-standardised defects in CFRPs are more common in real-life operations and, because of different nature, dimensions and complex shapes, their detection poses a significant challenge. This paper provides an in-depth analysis of LPT combined to advanced statistical and machine learning-based image processing tools for detection of non-standardised damage in CFRP composites. Statistical methods such as skewness and kurtosis, and machine learning algorithms such as principal component analysis and Fuzzy-c clustering were used to post-process thermal LPT signals. Damage scenarios that are likely to occur during manufacturing and in-service operations were analysed in terms of defect mapping characteristics using the signal-to-noise ratio and the Tanimoto criterion. Experimental results revealed that Fuzzy-c and LPT produced superior damage inspection performance.

Abstract Image

基于统计和机器学习的长脉冲热成像CFRP复合材料非标准化缺陷检测
近年来,红外长脉冲热成像技术(LPT)在低导热材料(如碳纤维增强聚合物(CFRP)复合材料)的无损检测中取得了较高的可靠性和准确性。然而,迄今为止,LPT的研究都是在标准化和可控的材料缺陷上进行的,如平底孔。cfrp的非标准化缺陷在实际操作中更为常见,由于其不同的性质、尺寸和复杂的形状,其检测提出了重大挑战。本文结合先进的统计和基于机器学习的图像处理工具,对LPT进行了深入分析,用于检测CFRP复合材料的非标准化损伤。利用偏度和峰度等统计方法,以及主成分分析和Fuzzy-c聚类等机器学习算法对热LPT信号进行后处理。使用信噪比和谷本准则,根据缺陷映射特征,分析了在制造和服役操作过程中可能发生的损坏情况。实验结果表明,Fuzzy-c和LPT具有较好的损伤检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nondestructive Evaluation
Journal of Nondestructive Evaluation 工程技术-材料科学:表征与测试
CiteScore
4.90
自引率
7.10%
发文量
67
审稿时长
9 months
期刊介绍: Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信