{"title":"Integrated Optical Coherence Tomography and Hyperspectral Imaging for Automated Structural Health Monitoring of Carbon Fibre Aircraft Structures","authors":"Yasser H. El-Sharkawy","doi":"10.1007/s10921-024-01141-1","DOIUrl":null,"url":null,"abstract":"<div><p>Structural health monitoring of carbon fiber components is critical in high-stakes applications such as aerospace and prosthetics. Carbon fiber’s exceptional mechanical properties demand precise defect detection to ensure safety and longevity. This paper reviews recent advancements in monitoring carbon fiber aircraft structures using a custom optical coherence tomography (OCT) imaging system. This innovative system integrates hyperspectral imaging with automated classifiers to detect and classify both surface and subsurface defects, including roughness and cracks. By employing OCT with magnitude and quantitative phase imaging algorithms, the study introduces methods for detailed three-dimensional visualization of material defects. The high-resolution capabilities of the OCT system enable accurate and automated crack detection, enhancing reliability in critical applications. The paper also addresses challenges in deploying these advanced systems in practical scenarios, such as integration with existing maintenance protocols and data interpretation. It explores the potential of combining OCT with other non-destructive evaluation techniques to improve monitoring accuracy. These advancements contribute to more reliable, non-invasive monitoring of carbon fiber structures, with significant implications for safety and performance in various industries.</p></div>","PeriodicalId":655,"journal":{"name":"Journal of Nondestructive Evaluation","volume":"44 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10921-024-01141-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10921-024-01141-1","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
Abstract
Structural health monitoring of carbon fiber components is critical in high-stakes applications such as aerospace and prosthetics. Carbon fiber’s exceptional mechanical properties demand precise defect detection to ensure safety and longevity. This paper reviews recent advancements in monitoring carbon fiber aircraft structures using a custom optical coherence tomography (OCT) imaging system. This innovative system integrates hyperspectral imaging with automated classifiers to detect and classify both surface and subsurface defects, including roughness and cracks. By employing OCT with magnitude and quantitative phase imaging algorithms, the study introduces methods for detailed three-dimensional visualization of material defects. The high-resolution capabilities of the OCT system enable accurate and automated crack detection, enhancing reliability in critical applications. The paper also addresses challenges in deploying these advanced systems in practical scenarios, such as integration with existing maintenance protocols and data interpretation. It explores the potential of combining OCT with other non-destructive evaluation techniques to improve monitoring accuracy. These advancements contribute to more reliable, non-invasive monitoring of carbon fiber structures, with significant implications for safety and performance in various industries.
期刊介绍:
Journal of Nondestructive Evaluation provides a forum for the broad range of scientific and engineering activities involved in developing a quantitative nondestructive evaluation (NDE) capability. This interdisciplinary journal publishes papers on the development of new equipment, analyses, and approaches to nondestructive measurements.